Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the logarithm.
Round your answer to the nearest thousandth.

3log_(9)((1)/(12))~~◻

Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newline3log9(112) 3 \log _{9}\left(\frac{1}{12}\right) \approx \square

Full solution

Q. Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newline3log9(112) 3 \log _{9}\left(\frac{1}{12}\right) \approx \square
  1. Understand the problem: Understand the problem.\newlineWe need to evaluate the logarithm of 112\frac{1}{12} with base 99, then multiply the result by 33.
  2. Convert to common base: Convert the base of the logarithm to a common base, such as base 1010 or base ee (natural logarithm).\newlineUsing the change of base formula: logb(a)=logc(a)logc(b)\log_b(a) = \frac{\log_c(a)}{\log_c(b)}, where cc is the new base.\newlineLet's use base 1010 for this problem.\newlinelog9(112)=log(112)log(9)\log_9(\frac{1}{12}) = \frac{\log(\frac{1}{12})}{\log(9)}
  3. Calculate log values: Calculate the value of log(112)\log(\frac{1}{12}) and log(9)\log(9) using a calculator.\newlinelog(112)1.079\log(\frac{1}{12}) \approx -1.079\newlinelog(9)0.954\log(9) \approx 0.954
  4. Divide to find log: Divide the two values to find the value of log9(112)\log_9(\frac{1}{12}).log9(112)1.0790.9541.131\log_9(\frac{1}{12}) \approx \frac{-1.079}{0.954} \approx -1.131
  5. Multiply by 33: Multiply the result by 33 to find the value of 3log9(112)3\log_9(\frac{1}{12}).3log9(112)3×(1.131)3.3933\log_9(\frac{1}{12}) \approx 3 \times (-1.131) \approx -3.393
  6. Round the result: Round the result to the nearest thousandth.\newline3log9(112)3.3933\log_9(\frac{1}{12}) \approx -3.393 (rounded to the nearest thousandth)

More problems from Compare linear, exponential, and quadratic growth