Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the logarithm.
Round your answer to the nearest thousandth.

log_(3)(346)~~

Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newlinelog3(346) \log _{3}(346) \approx

Full solution

Q. Evaluate the logarithm.\newlineRound your answer to the nearest thousandth.\newlinelog3(346) \log _{3}(346) \approx
  1. Calculate log base 33: Use a calculator to find the value of log3(346)\log_{3}(346).\newlineCalculation: log3(346)?\log_{3}(346) \approx ?
  2. Use Change of Base Formula: Since most calculators don't have a base 33 log function, use the change of base formula: log3(346)=log(346)log(3)\log_{3}(346) = \frac{\log(346)}{\log(3)}.\newlineCalculation: log(346)log(3)?\frac{\log(346)}{\log(3)} \approx ?
  3. Enter Values and Calculate: Enter the values into the calculator to get the result.\newlineCalculation: log(346)2.5391\log(346) \approx 2.5391, log(3)0.4771\log(3) \approx 0.4771, so log3(346)2.53910.4771\log_{3}(346) \approx \frac{2.5391}{0.4771}.
  4. Perform Division: Perform the division to find the value of log3346\log_{3} 346.\newlineCalculation: 2.5391/0.47715.3222.5391 / 0.4771 \approx 5.322.
  5. Round the Result: Round the result to the nearest thousandth.\newlineCalculation: 5.3225.322 rounded to the nearest thousandth is 5.3225.322.

More problems from Compare linear, exponential, and quadratic growth