Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

E=[[0,3,5],[5,5,2]] and 
D=[[3,4],[3,-2],[4,-2]] Let 
H=ED. Find 
H.

H=

E=[0amp;3amp;55amp;5amp;2] \mathrm{E}=\left[\begin{array}{lll}0 & 3 & 5 \\ 5 & 5 & 2\end{array}\right] and D=[3amp;43amp;24amp;2] \mathrm{D}=\left[\begin{array}{rr}3 & 4 \\ 3 & -2 \\ 4 & -2\end{array}\right] \newlineLet H=ED \mathrm{H}=\mathrm{ED} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. E=[035552] \mathrm{E}=\left[\begin{array}{lll}0 & 3 & 5 \\ 5 & 5 & 2\end{array}\right] and D=[343242] \mathrm{D}=\left[\begin{array}{rr}3 & 4 \\ 3 & -2 \\ 4 & -2\end{array}\right] \newlineLet H=ED \mathrm{H}=\mathrm{ED} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Understand matrix multiplication: Understand matrix multiplication.\newlineTo multiply two matrices, the number of columns in the first matrix must be equal to the number of rows in the second matrix. Matrix EE is a 2×32 \times 3 matrix and matrix DD is a 3×23 \times 2 matrix, so they can be multiplied to result in a 2×22 \times 2 matrix HH.
  2. Set up the multiplication: Set up the multiplication.\newlineWe will calculate each element of matrix HH by taking the dot product of the corresponding row from matrix EE and the corresponding column from matrix DD.
  3. Calculate first element of H: Calculate the first element of matrix H H[1,1]H[1,1].
    H[1,1]=E[1,1]×D[1,1]+E[1,2]×D[2,1]+E[1,3]×D[3,1]H[1,1] = E[1,1] \times D[1,1] + E[1,2] \times D[2,1] + E[1,3] \times D[3,1]
    H[1,1]=0×3+3×3+5×4H[1,1] = 0 \times 3 + 3 \times 3 + 5 \times 4
    H[1,1]=0+9+20H[1,1] = 0 + 9 + 20
    H[1,1]=29H[1,1] = 29
  4. Calculate second element of H: Calculate the second element of matrix H H[1,2]H[1,2].H[1,2]=E[1,1]D[1,2]+E[1,2]D[2,2]+E[1,3]D[3,2]H[1,2] = E[1,1]\cdot D[1,2] + E[1,2]\cdot D[2,2] + E[1,3]\cdot D[3,2]H[1,2]=04+3(2)+5(2)H[1,2] = 0\cdot 4 + 3\cdot (-2) + 5\cdot (-2)H[1,2]=0610H[1,2] = 0 - 6 - 10H[1,2]=16H[1,2] = -16
  5. Calculate third element of H: Calculate the third element of matrix H H[2,1]H[2,1].H[2,1]=E[2,1]D[1,1]+E[2,2]D[2,1]+E[2,3]D[3,1]H[2,1] = E[2,1]\cdot D[1,1] + E[2,2]\cdot D[2,1] + E[2,3]\cdot D[3,1]H[2,1]=53+53+24H[2,1] = 5\cdot 3 + 5\cdot 3 + 2\cdot 4H[2,1]=15+15+8H[2,1] = 15 + 15 + 8H[2,1]=38H[2,1] = 38
  6. Calculate fourth element of H: Calculate the fourth element of matrix HH (H[2,2]H[2,2]).\newlineH[2,2]=E[2,1]D[1,2]+E[2,2]D[2,2]+E[2,3]D[3,2]H[2,2] = E[2,1]\cdot D[1,2] + E[2,2]\cdot D[2,2] + E[2,3]\cdot D[3,2]\newlineH[2,2]=54+5(2)+2(2)H[2,2] = 5\cdot 4 + 5\cdot (-2) + 2\cdot (-2)\newlineH[2,2]=20104H[2,2] = 20 - 10 - 4\newlineH[2,2]=6H[2,2] = 6
  7. Combine elements for matrix H: Combine the elements to form matrix H.\newlineH = \left[\begin{array}{cc}\(\newlineH[1,1] & H[1,2] (\newline\)H[2,1] & H[2,2]\newline\end{array}\right]\)\newlineH = \left[\begin{array}{cc}\(\newline29 & -16 (\newline\)38 & 6\newline\end{array}\right]\)

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity