Q. E=[053552] and D=⎣⎡3344−2−2⎦⎤Let H=ED. Find H.H=
Understand matrix multiplication: Understand matrix multiplication.To multiply two matrices, the number of columns in the first matrix must be equal to the number of rows in the second matrix. Matrix E is a 2×3 matrix and matrix D is a 3×2 matrix, so they can be multiplied to result in a 2×2 matrix H.
Set up the multiplication: Set up the multiplication.We will calculate each element of matrix H by taking the dot product of the corresponding row from matrix E and the corresponding column from matrix D.
Calculate first element of H: Calculate the first element of matrix H H[1,1]. H[1,1]=E[1,1]×D[1,1]+E[1,2]×D[2,1]+E[1,3]×D[3,1] H[1,1]=0×3+3×3+5×4 H[1,1]=0+9+20 H[1,1]=29
Calculate second element of H: Calculate the second element of matrix H H[1,2].H[1,2]=E[1,1]⋅D[1,2]+E[1,2]⋅D[2,2]+E[1,3]⋅D[3,2]H[1,2]=0⋅4+3⋅(−2)+5⋅(−2)H[1,2]=0−6−10H[1,2]=−16
Calculate third element of H: Calculate the third element of matrix H H[2,1].H[2,1]=E[2,1]⋅D[1,1]+E[2,2]⋅D[2,1]+E[2,3]⋅D[3,1]H[2,1]=5⋅3+5⋅3+2⋅4H[2,1]=15+15+8H[2,1]=38
Calculate fourth element of H: Calculate the fourth element of matrix H (H[2,2]).H[2,2]=E[2,1]⋅D[1,2]+E[2,2]⋅D[2,2]+E[2,3]⋅D[3,2]H[2,2]=5⋅4+5⋅(−2)+2⋅(−2)H[2,2]=20−10−4H[2,2]=6
Combine elements for matrix H: Combine the elements to form matrix H.H = \left[\begin{array}{cc}\(\newlineH[1,1] & H[1,2] (\newline\)H[2,1] & H[2,2]\end{array}\right]\)H = \left[\begin{array}{cc}\(\newline29 & -16 (\newline\)38 & 6\end{array}\right]\)
More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity