Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Daniela tried to solve the differential equation 
(dy)/(dx)=2x*e^(-y). This is her work:

(dy)/(dx)=2x*e^(-y)
Step 1: 
quad inte^(-y)dy=int2xdx
Step 2: 
quad-e^(-y)=x^(2)+C_(1)
Step 3: 
quade^(-y)=-x^(2)+C
Step 4: 
quad ln(e^(-y))=ln(-x^(2)+C)
Step 5: 
quad-y=ln(-x^(2)+C)
Step 6: 
quad y=-ln(-x^(2)+C)
Is Daniela's work correct? If not, what is her mistake?
Choose 1 answer:
Daniela's work is correct.
Step 1 is incorrect. The separation of variables wasn't done correctly.
Step 2 is incorrect. Daniela didn't integrate 
e^(-y) correctly.
Step 4 is incorrect. The right-hand side of the equation should be 
ln(-x^(2))+C.

Daniela tried to solve the differential equation dydx=2xey \frac{d y}{d x}=2 x \cdot e^{-y} . This is her work:\newlinedydx=2xey \frac{d y}{d x}=2 x \cdot e^{-y} \newlineStep 11: eydy=2xdx \quad \int e^{-y} d y=\int 2 x d x \newlineStep 22: ey=x2+C1 \quad-e^{-y}=x^{2}+C_{1} \newlineStep 33: ey=x2+C \quad e^{-y}=-x^{2}+C \newlineStep 44: ln(ey)=ln(x2+C) \quad \ln \left(e^{-y}\right)=\ln \left(-x^{2}+C\right) \newlineStep 55: y=ln(x2+C) \quad-y=\ln \left(-x^{2}+C\right) \newlineStep 66: y=ln(x2+C) \quad y=-\ln \left(-x^{2}+C\right) \newlineIs Daniela's work correct? If not, what is her mistake?\newlineChoose 11 answer:\newline(A) Daniela's work is correct.\newline(B) Step 11 is incorrect. The separation of variables wasn't done correctly.\newline(C) Step 22 is incorrect. Daniela didn't integrate ey e^{-y} correctly.\newline(D) Step 44 is incorrect. The right-hand side of the equation should be ln(x2)+C \ln \left(-x^{2}\right)+C .

Full solution

Q. Daniela tried to solve the differential equation dydx=2xey \frac{d y}{d x}=2 x \cdot e^{-y} . This is her work:\newlinedydx=2xey \frac{d y}{d x}=2 x \cdot e^{-y} \newlineStep 11: eydy=2xdx \quad \int e^{-y} d y=\int 2 x d x \newlineStep 22: ey=x2+C1 \quad-e^{-y}=x^{2}+C_{1} \newlineStep 33: ey=x2+C \quad e^{-y}=-x^{2}+C \newlineStep 44: ln(ey)=ln(x2+C) \quad \ln \left(e^{-y}\right)=\ln \left(-x^{2}+C\right) \newlineStep 55: y=ln(x2+C) \quad-y=\ln \left(-x^{2}+C\right) \newlineStep 66: y=ln(x2+C) \quad y=-\ln \left(-x^{2}+C\right) \newlineIs Daniela's work correct? If not, what is her mistake?\newlineChoose 11 answer:\newline(A) Daniela's work is correct.\newline(B) Step 11 is incorrect. The separation of variables wasn't done correctly.\newline(C) Step 22 is incorrect. Daniela didn't integrate ey e^{-y} correctly.\newline(D) Step 44 is incorrect. The right-hand side of the equation should be ln(x2)+C \ln \left(-x^{2}\right)+C .
  1. Separate Variables: Daniela is trying to solve the differential equation (dydx=2xey)(\frac{dy}{dx} = 2x \cdot e^{-y}). The first step is to separate variables, which means we want to get all the yy's on one side and all the xx's on the other side.
  2. Correct Separation: The correct separation of variables would be to multiply both sides by dydy and divide both sides by e(y)e^{(-y)}, which gives us eydy=2xdxe^{y} dy = 2x dx. This is the correct separation of variables.

More problems from Compare linear and exponential growth