Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the complex number 
z=5(cos(15^(@))+i sin(15^(@))).
Which of the following complex numbers best approximates 
z ?
Choose 1 answer:
(A) 
4.8+1.3 i
(B) 
1.3+4.8 i
(C) 
-1.3+4.8 i
(D) 
-4.8+1.3 i

Consider the complex number z=5(cos(15)+isin(15)) z=5\left(\cos \left(15^{\circ}\right)+i \sin \left(15^{\circ}\right)\right) .\newlineWhich of the following complex numbers best approximates z z ?\newlineChoose 11 answer:\newline(A) 4.8+1.3i 4.8+1.3 i \newline(B) 1.3+4.8i 1.3+4.8 i \newline(C) 1.3+4.8i -1.3+4.8 i \newline(D) 4.8+1.3i -4.8+1.3 i

Full solution

Q. Consider the complex number z=5(cos(15)+isin(15)) z=5\left(\cos \left(15^{\circ}\right)+i \sin \left(15^{\circ}\right)\right) .\newlineWhich of the following complex numbers best approximates z z ?\newlineChoose 11 answer:\newline(A) 4.8+1.3i 4.8+1.3 i \newline(B) 1.3+4.8i 1.3+4.8 i \newline(C) 1.3+4.8i -1.3+4.8 i \newline(D) 4.8+1.3i -4.8+1.3 i
  1. Given complex number zz in polar form: We are given the complex number zz in polar form:\newlinez=5(cos(15°)+isin(15°))z = 5(\cos(15°) + i \sin(15°)).\newlineTo find the complex number that best approximates zz, we need to convert this polar form into its rectangular form, which is z=a+biz = a + bi, where aa is the real part and bb is the imaginary part.
  2. Calculating the real part of z: First, we calculate the real part of zz, which is a=5×cos(15°)a = 5 \times \cos(15°). Using a calculator or trigonometric tables, we find that cos(15°)\cos(15°) is approximately 0.96590.9659. So, a5×0.9659a \approx 5 \times 0.9659.
  3. Calculating the imaginary part of z: Now, we perform the calculation for the real part: \newlinea5×0.96594.8295a \approx 5 \times 0.9659 \approx 4.8295.\newlineWe can round this to one decimal place, getting a4.8a \approx 4.8.
  4. Converting to rectangular form: Next, we calculate the imaginary part of zz, which is b=5×sin(15°)b = 5 \times \sin(15°). Using a calculator or trigonometric tables, we find that sin(15°)\sin(15°) is approximately 0.25880.2588. So, b5×0.2588b \approx 5 \times 0.2588.
  5. Comparing the approximation to options: Now, we perform the calculation for the imaginary part:\newlineb5×0.25881.294b \approx 5 \times 0.2588 \approx 1.294.\newlineWe can round this to one decimal place, getting b1.3b \approx 1.3.
  6. Comparing the approximation to options: Now, we perform the calculation for the imaginary part:\newlineb5×0.25881.294b \approx 5 \times 0.2588 \approx 1.294.\newlineWe can round this to one decimal place, getting b1.3b \approx 1.3.Combining the real and imaginary parts, we get the rectangular form of zz:\newlinez4.8+1.3iz \approx 4.8 + 1.3i.
  7. Comparing the approximation to options: Now, we perform the calculation for the imaginary part:\newlineb5×0.25881.294b \approx 5 \times 0.2588 \approx 1.294.\newlineWe can round this to one decimal place, getting b1.3b \approx 1.3.Combining the real and imaginary parts, we get the rectangular form of zz:\newlinez4.8+1.3iz \approx 4.8 + 1.3i.We compare this approximation to the given options:\newline(A) 4.8+1.3i4.8 + 1.3i\newline(B) 1.3+4.8i1.3 + 4.8i\newline(C) 1.3+4.8i-1.3 + 4.8i\newline(D) 4.8+1.3i-4.8 + 1.3i\newlineThe approximation we calculated, 4.8+1.3i4.8 + 1.3i, matches option (A).

More problems from Compare linear and exponential growth