Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the complex number

z=4(cos(120^(@))+i sin(120^(@)))". "
Which of the following complex numbers best approximates 
z ?
Choose 1 answer:
(A) 
3.5-2i
(B) 
2-3.5 i
(C) 
-2+3.5 i
(D) 
-3.5+2i

Consider the complex number\newlinez=4(cos(120)+isin(120)) z=4\left(\cos \left(120^{\circ}\right)+i \sin \left(120^{\circ}\right)\right) \text {. } \newlineWhich of the following complex numbers best approximates z z ?\newlineChoose 11 answer:\newline(A) 3.52i 3.5-2 i \newline(B) 23.5i 2-3.5 i \newline(C) 2+3.5i -2+3.5 i \newline(D) 3.5+2i -3.5+2 i

Full solution

Q. Consider the complex number\newlinez=4(cos(120)+isin(120)) z=4\left(\cos \left(120^{\circ}\right)+i \sin \left(120^{\circ}\right)\right) \text {. } \newlineWhich of the following complex numbers best approximates z z ?\newlineChoose 11 answer:\newline(A) 3.52i 3.5-2 i \newline(B) 23.5i 2-3.5 i \newline(C) 2+3.5i -2+3.5 i \newline(D) 3.5+2i -3.5+2 i
  1. Convert to standard form: Convert the given complex number in trigonometric form to standard form.\newlineWe have z=4(cos(120°)+isin(120°))z = 4(\cos(120°) + i \sin(120°)). To convert this to standard form, we calculate the cosine and sine of 120°120°.\newlineCosine and sine of 120°120° can be found using the unit circle or trigonometric tables:\newlinecos(120°)=12\cos(120°) = -\frac{1}{2}\newlinesin(120°)=32\sin(120°) = \frac{\sqrt{3}}{2}\newlineNow, we multiply these values by 44 (the modulus of the complex number):\newlineReal part: 4cos(120°)=4(12)=24 \cdot \cos(120°) = 4 \cdot (-\frac{1}{2}) = -2\newlineImaginary part: 4isin(120°)=4i(32)=23i4 \cdot i \cdot \sin(120°) = 4 \cdot i \cdot (\frac{\sqrt{3}}{2}) = 2\sqrt{3} \cdot i
  2. Calculate cosine and sine: Approximate the value of 3\sqrt{3} to compare with the given options.\newlineThe value of 3\sqrt{3} is approximately 1.7321.732. So, the imaginary part of the complex number is approximately:\newline23i21.732i3.464i2\sqrt{3} \cdot i \approx 2 \cdot 1.732 \cdot i \approx 3.464 \cdot i\newlineWe can round this to 3.5i3.5 \cdot i for comparison purposes.
  3. Multiply by modulus: Compare the standard form of the complex number with the given options.\newlineThe standard form of the complex number is approximately 2+3.5i-2 + 3.5i. Now we compare this with the given options:\newline(A) 3.52i3.5 - 2i\newline(B) 23.5i2 - 3.5i\newline(C) 2+3.5i-2 + 3.5i\newline(D) 3.5+2i-3.5 + 2i\newlineOption (C) matches our calculated standard form of the complex number.

More problems from Compare linear, exponential, and quadratic growth