Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the range of the dataset.

{:[" 1-Var-Stats "],[ bar(x)=205.428571429],[Sigma x=1438],[Sigmax^(2)=334956],[Sx=81.1887864648],[sigma x=75.1662103852],[n=7],[minX=78],[Q_(1)=113],[Med^(2)=214],[Q_(3)=277],[maxX=283]:}
Answer:

Based on the following calculator output, determine the range of the dataset.\newline 1-Var-Stats xˉ=205.428571429Σx=1438Σx2=334956Sx=81.1887864648σx=75.1662103852n=7minX=78Q1=113Med2=214Q3=277maxX=283 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=205.428571429 \\ \Sigma x=1438 \\ \Sigma x^{2}=334956 \\ S x=81.1887864648 \\ \sigma x=75.1662103852 \\ n=7 \\ \operatorname{minX}=78 \\ \mathrm{Q}_{1}=113 \\ \mathrm{Med}^{2}=214 \\ \mathrm{Q}_{3}=277 \\ \max \mathrm{X}=283 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the range of the dataset.\newline 1-Var-Stats xˉ=205.428571429Σx=1438Σx2=334956Sx=81.1887864648σx=75.1662103852n=7minX=78Q1=113Med2=214Q3=277maxX=283 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=205.428571429 \\ \Sigma x=1438 \\ \Sigma x^{2}=334956 \\ S x=81.1887864648 \\ \sigma x=75.1662103852 \\ n=7 \\ \operatorname{minX}=78 \\ \mathrm{Q}_{1}=113 \\ \mathrm{Med}^{2}=214 \\ \mathrm{Q}_{3}=277 \\ \max \mathrm{X}=283 \end{array} \newlineAnswer:
  1. Calculate Range: The range of a dataset is the difference between the maximum and minimum values in the dataset.
  2. Identify Min and Max: According to the calculator output, the minimum value minX\text{minX} is 7878 and the maximum value maxX\text{maxX} is 283283.
  3. Subtract Min from Max: To find the range, subtract the minimum value from the maximum value: Range = maxXminX=28378\max X - \min X = 283 - 78.
  4. Perform Subtraction: Perform the subtraction: Range=28378=205\text{Range} = 283 - 78 = 205.
  5. Final Range: The range of the dataset is 205205.

More problems from Compare linear and exponential growth