Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the range of the dataset.

{:[" 1-Var-Stats "],[ bar(x)=57],[Sigma x=399],[Sigmax^(2)=23479],[Sx=11.0754984839],[sigma x=10.2539191114],[n=7],[minX=46],[Q_(1)=47],[Med^(2)=56],[Q_(3)=63],[maxX=76]:}
Answer:

Based on the following calculator output, determine the range of the dataset.\newline 1-Var-Stats xˉ=57Σx=399Σx2=23479Sx=11.0754984839σx=10.2539191114n=7minX=46Q1=47Med2=56Q3=63maxX=76 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=57 \\ \Sigma x=399 \\ \Sigma x^{2}=23479 \\ S x=11.0754984839 \\ \sigma x=10.2539191114 \\ n=7 \\ \operatorname{minX}=46 \\ Q_{1}=47 \\ \mathrm{Med}^{2}=56 \\ \mathrm{Q}_{3}=63 \\ \max \mathrm{X}=76 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the range of the dataset.\newline 1-Var-Stats xˉ=57Σx=399Σx2=23479Sx=11.0754984839σx=10.2539191114n=7minX=46Q1=47Med2=56Q3=63maxX=76 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=57 \\ \Sigma x=399 \\ \Sigma x^{2}=23479 \\ S x=11.0754984839 \\ \sigma x=10.2539191114 \\ n=7 \\ \operatorname{minX}=46 \\ Q_{1}=47 \\ \mathrm{Med}^{2}=56 \\ \mathrm{Q}_{3}=63 \\ \max \mathrm{X}=76 \end{array} \newlineAnswer:
  1. Calculate Range: The range of a dataset is the difference between the maximum and minimum values in the set. According to the calculator output, the minimum value minXminX is 4646 and the maximum value maxXmaxX is 7676.
  2. Subtract Minimum from Maximum: To find the range, we subtract the minimum value from the maximum value: Range = maxXminX=7646\max X - \min X = 76 - 46.
  3. Final Result: Performing the subtraction gives us the range: Range = 3030.

More problems from Compare linear and exponential growth