Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 10oth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=53.7142857143],[Sigma x=376],[Sigmax^(2)=20530],[Sx=7.45462464323],[sigma x=6.90164133096],[n=7],[minX=44],[Q_(1)=48],[Med^(2)=53],[Q_(3)=63],[maxX=64]:}
Answer:

Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 1010oth if necessary.\newline 1-Var-Stats xˉ=53.7142857143Σx=376Σx2=20530Sx=7.45462464323σx=6.90164133096n=7minX=44Q1=48Med2=53Q3=63maxX=64 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=53.7142857143 \\ \Sigma x=376 \\ \Sigma x^{2}=20530 \\ S x=7.45462464323 \\ \sigma x=6.90164133096 \\ n=7 \\ \operatorname{minX}=44 \\ \mathrm{Q}_{1}=48 \\ \mathrm{Med}^{2}=53 \\ \mathrm{Q}_{3}=63 \\ \max \mathrm{X}=64 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 1010oth if necessary.\newline 1-Var-Stats xˉ=53.7142857143Σx=376Σx2=20530Sx=7.45462464323σx=6.90164133096n=7minX=44Q1=48Med2=53Q3=63maxX=64 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=53.7142857143 \\ \Sigma x=376 \\ \Sigma x^{2}=20530 \\ S x=7.45462464323 \\ \sigma x=6.90164133096 \\ n=7 \\ \operatorname{minX}=44 \\ \mathrm{Q}_{1}=48 \\ \mathrm{Med}^{2}=53 \\ \mathrm{Q}_{3}=63 \\ \max \mathrm{X}=64 \end{array} \newlineAnswer:
  1. Calculate Mean: The calculator output provides the mean of the dataset directly as xˉ=53.7142857143\bar{x} = 53.7142857143. To determine the mean, we can simply refer to this value.
  2. Round to Nearest Hundredth: Since we are asked to round the mean to the nearest hundredth, we look at the third decimal place, which is a 44. Since it is less than 55, we do not need to round up the second decimal place. Therefore, the mean rounded to the nearest hundredth is 53.7153.71.

More problems from Compare linear and exponential growth