Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 10oth if necessary.

{:[" 1-Var-Stats "],[ bar(x)=169.285714286],[Sigma x=1185],[Sigmax^(2)=202903],[Sx=19.5764678949],[sigma x=18.1242874596],[n=7],[minX=140],[Q_(1)=145],[Med^(2)=177],[Q_(3)=184],[maxX=192]:}
Answer:

Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 1010oth if necessary.\newline 1-Var-Stats xˉ=169.285714286Σx=1185Σx2=202903Sx=19.5764678949σx=18.1242874596n=7minX=140Q1=145Med2=177Q3=184maxX=192 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=169.285714286 \\ \Sigma x=1185 \\ \Sigma x^{2}=202903 \\ S x=19.5764678949 \\ \sigma x=18.1242874596 \\ n=7 \\ \min \mathrm{X}=140 \\ \mathrm{Q}_{1}=145 \\ \mathrm{Med}^{2}=177 \\ \mathrm{Q}_{3}=184 \\ \max \mathrm{X}=192 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the mean of the dataset, rounding to the nearest 1010oth if necessary.\newline 1-Var-Stats xˉ=169.285714286Σx=1185Σx2=202903Sx=19.5764678949σx=18.1242874596n=7minX=140Q1=145Med2=177Q3=184maxX=192 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=169.285714286 \\ \Sigma x=1185 \\ \Sigma x^{2}=202903 \\ S x=19.5764678949 \\ \sigma x=18.1242874596 \\ n=7 \\ \min \mathrm{X}=140 \\ \mathrm{Q}_{1}=145 \\ \mathrm{Med}^{2}=177 \\ \mathrm{Q}_{3}=184 \\ \max \mathrm{X}=192 \end{array} \newlineAnswer:
  1. Calculate Mean: The calculator output provides the symbol xˉ\bar{x} which represents the mean of the dataset. The value next to xˉ\bar{x} is the mean we are looking for.\newlineCalculation: The mean is given as 169.285714286169.285714286.\newlineRounding to the nearest hundredth, we get 169.29169.29.

More problems from Compare linear and exponential growth