Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the inter-quartile range of the dataset.

{:[" 1-Var-Stats "],[ bar(x)=91.7142857143],[Sigma x=642],[Sigmax^(2)=69948],[Sx=42.9484741123],[sigma x=39.7625605877],[n=7],[minX=33],[Q_(1)=45],[Med^(2)=92],[Q_(3)=117],[maxX=156]:}
Answer:

Based on the following calculator output, determine the inter-quartile range of the dataset.\newline 1-Var-Stats xˉ=91.7142857143Σx=642Σx2=69948Sx=42.9484741123σx=39.7625605877n=7minX=33Q1=45Med2=92Q3=117maxX=156 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=91.7142857143 \\ \Sigma x=642 \\ \Sigma x^{2}=69948 \\ S x=42.9484741123 \\ \sigma x=39.7625605877 \\ n=7 \\ \operatorname{minX}=33 \\ \mathrm{Q}_{1}=45 \\ \mathrm{Med}^{2}=92 \\ \mathrm{Q}_{3}=117 \\ \operatorname{maxX}=156 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the inter-quartile range of the dataset.\newline 1-Var-Stats xˉ=91.7142857143Σx=642Σx2=69948Sx=42.9484741123σx=39.7625605877n=7minX=33Q1=45Med2=92Q3=117maxX=156 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=91.7142857143 \\ \Sigma x=642 \\ \Sigma x^{2}=69948 \\ S x=42.9484741123 \\ \sigma x=39.7625605877 \\ n=7 \\ \operatorname{minX}=33 \\ \mathrm{Q}_{1}=45 \\ \mathrm{Med}^{2}=92 \\ \mathrm{Q}_{3}=117 \\ \operatorname{maxX}=156 \end{array} \newlineAnswer:
  1. Identify Quartiles: Identify the first quartile ( extit{Q11}) and the third quartile ( extit{Q33}) from the calculator output.\newlineFrom the output, we have extit{Q11} = 4545 and extit{Q33} = 117117.
  2. Calculate IQR: Calculate the inter-quartile range (IQR) using the formula IQR=Q3Q1IQR = Q3 - Q1.\newlineIQR=11745=72IQR = 117 - 45 = 72.
  3. Verify Values: Verify that the values used for Q1Q1 and Q3Q3 are correct and that the subtraction is done correctly.\newlineQ1=45Q1 = 45 and Q3=117Q3 = 117 are given in the output, and 11745=72117 - 45 = 72 is the correct subtraction.

More problems from Compare linear and exponential growth