Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Based on the following calculator output, determine the inter-quartile range of the dataset.

{:[" 1-Var-Stats "],[ bar(x)=216.857142857],[Sigma x=1518],[Sigmax^(2)=356184],[Sx=67.0756502551],[sigma x=62.0999852115],[n=7],[minX=108],[Q_(1)=135],[Med^(2)=245],[Q_(3)=267],[maxX=278]:}
Answer:

Based on the following calculator output, determine the inter-quartile range of the dataset.\newline 1-Var-Stats xˉ=216.857142857Σx=1518Σx2=356184Sx=67.0756502551σx=62.0999852115n=7minX=108Q1=135Med2=245Q3=267maxX=278 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=216.857142857 \\ \Sigma x=1518 \\ \Sigma x^{2}=356184 \\ S x=67.0756502551 \\ \sigma x=62.0999852115 \\ n=7 \\ \operatorname{minX}=108 \\ \mathrm{Q}_{1}=135 \\ \mathrm{Med}^{2}=245 \\ \mathrm{Q}_{3}=267 \\ \operatorname{maxX}=278 \end{array} \newlineAnswer:

Full solution

Q. Based on the following calculator output, determine the inter-quartile range of the dataset.\newline 1-Var-Stats xˉ=216.857142857Σx=1518Σx2=356184Sx=67.0756502551σx=62.0999852115n=7minX=108Q1=135Med2=245Q3=267maxX=278 \begin{array}{l} \text { 1-Var-Stats } \\ \bar{x}=216.857142857 \\ \Sigma x=1518 \\ \Sigma x^{2}=356184 \\ S x=67.0756502551 \\ \sigma x=62.0999852115 \\ n=7 \\ \operatorname{minX}=108 \\ \mathrm{Q}_{1}=135 \\ \mathrm{Med}^{2}=245 \\ \mathrm{Q}_{3}=267 \\ \operatorname{maxX}=278 \end{array} \newlineAnswer:
  1. Identify Q11 and Q33: Identify the first quartile (Q1Q1) and the third quartile (Q3Q3) from the calculator output.\newlineFrom the output, we have Q1=135Q1 = 135 and Q3=267Q3 = 267.
  2. Calculate IQR: Calculate the inter-quartile range (IQR) using the formula IQR=Q3Q1IQR = Q3 - Q1.\newlineIQR=267135=132IQR = 267 - 135 = 132.
  3. Verify Values and Subtraction: Verify that the values used for Q1Q1 and Q3Q3 are correct and that the subtraction is done correctly.Q1=135Q1 = 135 and Q3=267Q3 = 267 are given by the calculator output. The subtraction 267135=132267 - 135 = 132 is correct.

More problems from Compare linear and exponential growth