Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A polynomial 
p has zeros when 
x=0,x=-(1)/(6), and 
x=-3.
What could be the equation of 
p ?
Choose 1 answer:
(A) 
p(x)=x(6x+1)(x+3)
(B) 
p(x)=x(6x-1)(x-3)
(C) 
p(x)=x((1)/(6)x)(x+3)
(D) 
p(x)=x(-(1)/(6)x)(x-3)

A polynomial p p has zeros when x=0,x=16 x=0, x=-\frac{1}{6} , and x=3 x=-3 .\newlineWhat could be the equation of p p ?\newlineChoose 11 answer:\newline(A) p(x)=x(6x+1)(x+3) p(x)=x(6 x+1)(x+3) \newline(B) p(x)=x(6x1)(x3) p(x)=x(6 x-1)(x-3) \newline(C) p(x)=x(16x)(x+3) p(x)=x\left(\frac{1}{6} x\right)(x+3) \newline(D) p(x)=x(16x)(x3) p(x)=x\left(-\frac{1}{6} x\right)(x-3)

Full solution

Q. A polynomial p p has zeros when x=0,x=16 x=0, x=-\frac{1}{6} , and x=3 x=-3 .\newlineWhat could be the equation of p p ?\newlineChoose 11 answer:\newline(A) p(x)=x(6x+1)(x+3) p(x)=x(6 x+1)(x+3) \newline(B) p(x)=x(6x1)(x3) p(x)=x(6 x-1)(x-3) \newline(C) p(x)=x(16x)(x+3) p(x)=x\left(\frac{1}{6} x\right)(x+3) \newline(D) p(x)=x(16x)(x3) p(x)=x\left(-\frac{1}{6} x\right)(x-3)
  1. Identify Zeros: Zeros of the polynomial are given as x=0x=0, x=16x=-\frac{1}{6}, and x=3x=-3. The factors of the polynomial will be (x0)(x-0), (x(16))(x-\left(-\frac{1}{6}\right)), and (x(3))(x-(-3)).
  2. Simplify Factors: Simplify the factors to get xx, (x+16)\left(x+\frac{1}{6}\right), and (x+3)\left(x+3\right).
  3. Multiply Factors: Multiply the factors to form the polynomial equation p(x)=x(x+16)(x+3)p(x) = x \cdot (x+\frac{1}{6}) \cdot (x+3).
  4. Eliminate Fraction: To get rid of the fraction in the second factor, multiply x+16x+\frac{1}{6} by 66 to get 6x+16x+1. The polynomial equation becomes p(x)=x(6x+1)(x+3)p(x) = x \cdot (6x+1) \cdot (x+3).
  5. Final Polynomial Equation: The equation p(x)=x(6x+1)(x+3)p(x) = x \cdot (6x+1) \cdot (x+3) matches with option (A) p(x)=x(6x+1)(x+3)p(x)=x(6x+1)(x+3).

More problems from Write a quadratic function from its x-intercepts and another point