Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A line segment has the endpoints S(2,6)S(2,6) and T(0,10)T(0,10). Find the coordinates of its midpoint MM.

Full solution

Q. A line segment has the endpoints S(2,6)S(2,6) and T(0,10)T(0,10). Find the coordinates of its midpoint MM.
  1. Identify Midpoint Formula: Identify the midpoint formula for a line segment.\newlineThe midpoint of a line segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:\newlineMidpoint M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).
  2. Apply Formula to Endpoints: Apply the midpoint formula to the given endpoints S(2,6)S(2,6) and T(0,10)T(0,10). Substitute (2,6)(2, 6) for (x1,y1)(x_1, y_1) and (0,10)(0, 10) for (x2,y2)(x_2, y_2) into the midpoint formula. M=(2+02,6+102)M = \left(\frac{2 + 0}{2}, \frac{6 + 10}{2}\right).
  3. Calculate Midpoint Coordinates: Calculate the coordinates of the midpoint MM.M=(2+02,6+102)M = \left(\frac{2 + 0}{2}, \frac{6 + 10}{2}\right) simplifies to M=(22,162)M = \left(\frac{2}{2}, \frac{16}{2}\right).M=(1,8)M = (1, 8).

More problems from Midpoint formula: find the midpoint