Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A line segment has the endpoints P(6,3)P(6,3) and Q(10,3)Q(10,3). Find the coordinates of its midpoint MM.\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)

Full solution

Q. A line segment has the endpoints P(6,3)P(6,3) and Q(10,3)Q(10,3). Find the coordinates of its midpoint MM.\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)
  1. Identify Midpoint Formula: Identify the midpoint formula for a line segment.\newlineThe midpoint of a line segment with endpoints (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:\newlineMidpoint M=(x1+x22,y1+y22)M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right).
  2. Apply Formula to Endpoints: Apply the midpoint formula to the given endpoints P(6,3)P(6,3) and Q(10,3)Q(10,3). Substitute (6,3)(6, 3) for (x1,y1)(x_1, y_1) and (10,3)(10, 3) for (x2,y2)(x_2, y_2) into the midpoint formula. M=(6+102,3+32)M = \left(\frac{6 + 10}{2}, \frac{3 + 3}{2}\right).
  3. Calculate Midpoint Coordinates: Calculate the coordinates of the midpoint MM.M=(6+102,3+32)=(162,62)=(8,3)M = \left(\frac{6 + 10}{2}, \frac{3 + 3}{2}\right) = \left(\frac{16}{2}, \frac{6}{2}\right) = (8, 3).

More problems from Midpoint formula: find the midpoint