Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A line segment has the endpoints G(9,10)G(9,10) and H(9,2)H(9,2). Find the coordinates of its midpoint MM.\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)

Full solution

Q. A line segment has the endpoints G(9,10)G(9,10) and H(9,2)H(9,2). Find the coordinates of its midpoint MM.\newlineWrite the coordinates as decimals or integers.\newlineM=(_,_)M = (\_,\_)
  1. Identify Midpoint Formula: Identify the midpoint formula for a line segment.\newlineThe midpoint of a line segment with endpoints (x1,y1)(x_1,y_1) and (x2,y2)(x_2,y_2) is given by the formula:\newlineMidpoint: (x1+x22,y1+y22)\left(\frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2}\right)
  2. Apply Formula to Endpoints: Apply the midpoint formula to the given endpoints G(9,10)G(9,10) and H(9,2)H(9,2). Substitute (9,10)(9, 10) for (x1,y1)(x_1, y_1) and (9,2)(9, 2) for (x2,y2)(x_2, y_2) into the midpoint formula. M=(9+92,10+22)M = \left(\frac{9 + 9}{2} , \frac{10 + 2}{2}\right)
  3. Calculate Midpoint Coordinates: Calculate the coordinates of the midpoint MM.M=(9+92,10+22)M = \left(\frac{9 + 9}{2} , \frac{10 + 2}{2}\right)M=(182,122)M = \left(\frac{18}{2} , \frac{12}{2}\right)M=(9,6)M = (9, 6)

More problems from Midpoint formula: find the midpoint