Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A complex number 
z_(1) has a magnitude 
|z_(1)|=3 and an angle 
theta_(1)=20^(@).
Express 
z_(1) in rectangular form, as 
z_(1)=a+bi.
Round 
a and 
b to the nearest thousandth.

z_(1)=◻+◻i

A complex number z1 z_{1} has a magnitude z1=3 \left|z_{1}\right|=3 and an angle θ1=20 \theta_{1}=20^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i

Full solution

Q. A complex number z1 z_{1} has a magnitude z1=3 \left|z_{1}\right|=3 and an angle θ1=20 \theta_{1}=20^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i
  1. Convert to rectangular form: Convert the polar form of the complex number to rectangular form using the formula z=r(cos(θ)+isin(θ))z = r(\cos(\theta) + i\sin(\theta)), where rr is the magnitude and θ\theta is the angle.\newlineGiven: z1=3|z_{1}| = 3 and θ1=20\theta_{1} = 20 degrees.\newlineWe need to calculate the cosine and sine of 2020 degrees.
  2. Calculate cosine and sine: Calculate the cosine and sine of 2020 degrees.\newlineUsing a calculator or trigonometric tables:\newlinecos(20)0.9397\cos(20^\circ) \approx 0.9397\newlinesin(20)0.3420\sin(20^\circ) \approx 0.3420
  3. Multiply by magnitude: Multiply the cosine and sine values by the magnitude to get the real and imaginary parts of the complex number.\newlinea=rcos(θ)=30.93972.8191a = r \cdot \cos(\theta) = 3 \cdot 0.9397 \approx 2.8191\newlineb=rsin(θ)=30.34201.0260b = r \cdot \sin(\theta) = 3 \cdot 0.3420 \approx 1.0260
  4. Round to nearest thousandth: Round the real and imaginary parts to the nearest thousandth.\newlinea2.819a \approx 2.819\newlineb1.026b \approx 1.026
  5. Express in rectangular form: Express z1z_{1} in rectangular form using the rounded values of aa and bb.z1=a+bi=2.819+1.026iz_{1} = a + bi = 2.819 + 1.026i

More problems from Compare linear and exponential growth