Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A complex number 
z_(1) has a magnitude 
|z_(1)|=12 and an angle 
theta_(1)=163^(@).
Express 
z_(1) in rectangular form, as 
z_(1)=a+bi.
Round 
a and 
b to the nearest thousandth.

z_(1)=◻+◻i

A complex number z1 z_{1} has a magnitude z1=12 \left|z_{1}\right|=12 and an angle θ1=163 \theta_{1}=163^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i

Full solution

Q. A complex number z1 z_{1} has a magnitude z1=12 \left|z_{1}\right|=12 and an angle θ1=163 \theta_{1}=163^{\circ} .\newlineExpress z1 z_{1} in rectangular form, as z1=a+bi z_{1}=a+b i .\newlineRound a a and b b to the nearest thousandth.\newlinez1=+i z_{1}=\square+\square i
  1. Convert angle to radians: To convert a complex number from polar to rectangular form, we use the equations a=zcos(θ)a = |z| \cdot \cos(\theta) and b=zsin(θ)b = |z| \cdot \sin(\theta), where z|z| is the magnitude and θ\theta is the angle in radians.
  2. Calculate theta in radians: First, we need to convert the angle from degrees to radians. The angle given is 163163 degrees. To convert degrees to radians, we multiply by π/180\pi/180. \newlineθ1\theta_{1} in radians = 163×(π/180)163 \times (\pi/180)
  3. Calculate real part aa: Now we calculate the value of θ1\theta_1 in radians.θ1\theta_1 in radians 163×(π/180)2.844886680750757\approx 163 \times (\pi/180) \approx 2.844886680750757
  4. Calculate value of a: Next, we calculate the real part aa of the complex number using the cosine of the angle.a=z1cos(θ1)=12cos(2.844886680750757)a = |z_{1}| \cdot \cos(\theta_{1}) = 12 \cdot \cos(2.844886680750757)
  5. Calculate imaginary part b: Now we calculate the value of aa.a12×cos(2.844886680750757)12×(0.961261695938319)11.535140351259428a \approx 12 \times \cos(2.844886680750757) \approx 12 \times (-0.961261695938319) \approx -11.535140351259428
  6. Calculate value of b: Next, we calculate the imaginary part bb of the complex number using the sine of the angle.b=z1sin(θ1)=12sin(2.844886680750757)b = |z_{1}| \cdot \sin(\theta_{1}) = 12 \cdot \sin(2.844886680750757)
  7. Round to nearest thousandth: Now we calculate the value of bb.\newlineb12×sin(2.844886680750757)12×0.275637355816999163.30764787060399b \approx 12 \times \sin(2.844886680750757) \approx 12 \times 0.27563735581699916 \approx 3.30764787060399
  8. Round to nearest thousandth: Now we calculate the value of bb.b12×sin(2.844886680750757)12×0.275637355816999163.30764787060399b \approx 12 \times \sin(2.844886680750757) \approx 12 \times 0.27563735581699916 \approx 3.30764787060399Finally, we round aa and bb to the nearest thousandth.a11.535a \approx -11.535 (rounded to the nearest thousandth)b3.308b \approx 3.308 (rounded to the nearest thousandth)

More problems from Compare linear and exponential growth