Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A circle in the xy-plane has the equation x2+y210x+32y+272=0.x^{2}+y^{2} -10x+32y+272=0.\newlineWhich of the following best describes the location of the center of the circle and the length of its radius?\newlineChoose 11 answer:\newline(A) Center: (10,32)(10,-32)\newlineRadius: 4174\sqrt{17}\newline(B) Center: (10,32)(-10,32)\newlineRadius: 4174\sqrt{17}\newline(C) Center: (5,16)(-5,16)\newlineRadius: 33\newline(D) Center: (5,16)(5,-16)\newlineRadius: 33

Full solution

Q. A circle in the xy-plane has the equation x2+y210x+32y+272=0.x^{2}+y^{2} -10x+32y+272=0.\newlineWhich of the following best describes the location of the center of the circle and the length of its radius?\newlineChoose 11 answer:\newline(A) Center: (10,32)(10,-32)\newlineRadius: 4174\sqrt{17}\newline(B) Center: (10,32)(-10,32)\newlineRadius: 4174\sqrt{17}\newline(C) Center: (5,16)(-5,16)\newlineRadius: 33\newline(D) Center: (5,16)(5,-16)\newlineRadius: 33
  1. Rewriting the equation: To find the center and radius of the circle, we need to rewrite the equation in standard form, which is (xh)2+(yk)2=r2(x - h)^2 + (y - k)^2 = r^2, where (h,k)(h, k) is the center and rr is the radius.
  2. Grouping the terms: First, we group the xx terms and the yy terms together: (x210x)+(y2+32y)=272(x^2 - 10x) + (y^2 + 32y) = -272.
  3. Completing the square for xx terms: Next, we complete the square for the xx terms and the yy terms. To complete the square, we take half of the coefficient of xx (which is 10-10) and square it, adding and subtracting this value inside the parentheses. We do the same for yy with the coefficient of 3232.
  4. Completing the square for y terms: For the x terms: x210x+(102)2x^2 - 10x + (\frac{10}{2})^2 - 102\frac{10}{2}^22 = x210x+25x^2 - 10x + 25 - 2525.\newlineFor the y terms: y2+32y+(322)2y^2 + 32y + (\frac{32}{2})^2 - 322\frac{32}{2}^22 = y2+32y+256y^2 + 32y + 256 - 256256.
  5. Adding completed squares to both sides: Now we add these completed squares to both sides of the equation: (x210x+25)+(y2+32y+256)=272+25+256(x^2 - 10x + 25) + (y^2 + 32y + 256) = -272 + 25 + 256.
  6. Simplifying the equation: Simplify the equation: (x5)2+(y+16)2=9(x - 5)^2 + (y + 16)^2 = 9.
  7. Identifying the center and radius: Now we can see that the equation is in standard form, with the center of the circle at (h,k)=(5,16)(h, k) = (5, -16) and the radius r=9=3r = \sqrt{9} = 3.
  8. Correct answer: Comparing with the given options, the correct answer is (D) Center: (5,16)(5, -16) Radius: 33.

More problems from Convert equations of circles from general to standard form