Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the sum of 
(w^(6)+(2)/(3)w^(2)) and 
((1)/(2)w^(6)+(1)/(3)w^(2)+(1)/(4)) ?
Choose 1 answer:
(A) 
(1)/(2)w^(6)+(1)/(3)w^(2)-(1)/(4)
(B) 
(1)/(2)w^(6)+w^(2)+(1)/(4)
(C) 
(3)/(2)w^(6)+(1)/(3)w^(2)-(1)/(4)
(D) 
(3)/(2)w^(6)+w^(2)+(1)/(4)

What is the sum of (w6+23w2) \left(w^{6}+\frac{2}{3} w^{2}\right) and (12w6+13w2+14) \left(\frac{1}{2} w^{6}+\frac{1}{3} w^{2}+\frac{1}{4}\right) ?\newlineChoose 11 answer:\newline(A) 12w6+13w214 \frac{1}{2} w^{6}+\frac{1}{3} w^{2}-\frac{1}{4} \newline(B) 12w6+w2+14 \frac{1}{2} w^{6}+w^{2}+\frac{1}{4} \newline(C) 32w6+13w214 \frac{3}{2} w^{6}+\frac{1}{3} w^{2}-\frac{1}{4} \newline(D) 32w6+w2+14 \frac{3}{2} w^{6}+w^{2}+\frac{1}{4}

Full solution

Q. What is the sum of (w6+23w2) \left(w^{6}+\frac{2}{3} w^{2}\right) and (12w6+13w2+14) \left(\frac{1}{2} w^{6}+\frac{1}{3} w^{2}+\frac{1}{4}\right) ?\newlineChoose 11 answer:\newline(A) 12w6+13w214 \frac{1}{2} w^{6}+\frac{1}{3} w^{2}-\frac{1}{4} \newline(B) 12w6+w2+14 \frac{1}{2} w^{6}+w^{2}+\frac{1}{4} \newline(C) 32w6+13w214 \frac{3}{2} w^{6}+\frac{1}{3} w^{2}-\frac{1}{4} \newline(D) 32w6+w2+14 \frac{3}{2} w^{6}+w^{2}+\frac{1}{4}
  1. Write expressions to be added: Write down the expressions to be added.\newlineWe have two expressions:\newlinew6+23w2w^{6} + \frac{2}{3}w^{2}\newlineand\newline12w6+13w2+14\frac{1}{2}w^{6} + \frac{1}{3}w^{2} + \frac{1}{4}\newlineWe need to add these two expressions together.
  2. Combine like terms: Combine like terms.\newlineTo add the expressions, we combine the coefficients of the like terms, which are the terms with the same power of ww.\newlineFor w6w^{6} terms: 1w6+12w6=32w61 \cdot w^{6} + \frac{1}{2} \cdot w^{6} = \frac{3}{2} \cdot w^{6}\newlineFor w2w^{2} terms: 23w2+13w2=33w2=w2\frac{2}{3} \cdot w^{2} + \frac{1}{3} \cdot w^{2} = \frac{3}{3} \cdot w^{2} = w^{2}\newlineThe constant term 14\frac{1}{4} has no like term in the first expression, so it remains as it is.
  3. Write final expression: Write the final expression.\newlineThe sum of the two expressions is:\newline(32)w6+w2+(14)(\frac{3}{2})w^{6} + w^{2} + (\frac{1}{4})
  4. Match final expression with choices: Match the final expression with the given choices.\newlineThe final expression (32)w6+w2+(14)(\frac{3}{2})w^{6} + w^{2} + (\frac{1}{4}) matches with choice (D).

More problems from Compare linear, exponential, and quadratic growth