Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the sum of 
(4x^(5)-8x^(3)+(1)/(3)x^(2)) and 
((1)/(2)x^(3)-4x^(2)) ?
Choose 1 answer:
(A) 
4x^(5)-12x^(3)+(5)/(6)x^(2)
(B) 
4x^(5)-(15)/(2)x^(3)-(11)/(3)x^(2)
(c) 
4x^(5)-(7)/(2)x^(3)-x^(2)
(D) 
4x^(5)-(17)/(2)x^(3)+(11)/(3)x^(2)

What is the sum of (4x58x3+13x2) \left(4 x^{5}-8 x^{3}+\frac{1}{3} x^{2}\right) and (12x34x2)? \left(\frac{1}{2} x^{3}-4 x^{2}\right) ? \newlineChoose 11 answer:\newline(A) 4x512x3+56x2 4 x^{5}-12 x^{3}+\frac{5}{6} x^{2} \newline(B) 4x5152x3113x2 4 x^{5}-\frac{15}{2} x^{3}-\frac{11}{3} x^{2} \newline(C) 4x572x3x2 4 x^{5}-\frac{7}{2} x^{3}-x^{2} \newline(D) 4x5172x3+113x2 4 x^{5}-\frac{17}{2} x^{3}+\frac{11}{3} x^{2}

Full solution

Q. What is the sum of (4x58x3+13x2) \left(4 x^{5}-8 x^{3}+\frac{1}{3} x^{2}\right) and (12x34x2)? \left(\frac{1}{2} x^{3}-4 x^{2}\right) ? \newlineChoose 11 answer:\newline(A) 4x512x3+56x2 4 x^{5}-12 x^{3}+\frac{5}{6} x^{2} \newline(B) 4x5152x3113x2 4 x^{5}-\frac{15}{2} x^{3}-\frac{11}{3} x^{2} \newline(C) 4x572x3x2 4 x^{5}-\frac{7}{2} x^{3}-x^{2} \newline(D) 4x5172x3+113x2 4 x^{5}-\frac{17}{2} x^{3}+\frac{11}{3} x^{2}
  1. Write down polynomials: Write down the given polynomials and prepare to combine like terms.\newlineWe have:\newlineFirst polynomial: 4x58x3+(13)x24x^5 - 8x^3 + \left(\frac{1}{3}\right)x^2\newlineSecond polynomial: (12)x34x2\left(\frac{1}{2}\right)x^3 - 4x^2\newlineTo find the sum, we will add the coefficients of the like terms.
  2. Combine x5x^5 terms: Combine the coefficients of the x5x^5 terms.\newlineSince there is only one x5x^5 term in the first polynomial and none in the second, the x5x^5 term in the sum is 4x54x^5.
  3. Combine x3x^3 terms: Combine the coefficients of the x3x^3 terms.\newlineThe first polynomial has 8x3-8x^3 and the second polynomial has (1/2)x3(1/2)x^3. Adding these gives us 8x3+(1/2)x3=8x3+0.5x3=7.5x3-8x^3 + (1/2)x^3 = -8x^3 + 0.5x^3 = -7.5x^3.
  4. Combine x2x^2 terms: Combine the coefficients of the x2x^2 terms.\newlineThe first polynomial has (1/3)x2(1/3)x^2 and the second polynomial has 4x2-4x^2. Adding these gives us (1/3)x24x2=(1/3)x2(12/3)x2=(11/3)x2(1/3)x^2 - 4x^2 = (1/3)x^2 - (12/3)x^2 = -(11/3)x^2.
  5. Write down final sum: Write down the final sum of the polynomials.\newlineCombining the results from the previous steps, we get:\newline4x57.5x3(113)x24x^5 - 7.5x^3 - \left(\frac{11}{3}\right)x^2\newlineHowever, we need to express 7.5x3-7.5x^3 as a fraction to match the answer choices. 7.5-7.5 is the same as (152)-\left(\frac{15}{2}\right), so the term becomes (152)x3-\left(\frac{15}{2}\right)x^3.
  6. Match with answer choices: Match the final expression with the given answer choices.\newlineThe final expression is 4x5(152)x3(113)x24x^5 - \left(\frac{15}{2}\right)x^3 - \left(\frac{11}{3}\right)x^2, which corresponds to answer choice (B).

More problems from Compare linear, exponential, and quadratic growth