Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Viet solved a quadratic equation. His work is shown below.
In which step did Viet make an error?

2(x-3)^(2)+4=102

{:[2(x-3)^(2)=106" Step 1 "],[(x-3)^(2)=53" Step 2 "],[x-3=+-sqrt53" Step 3 "],[x=+-sqrt53+3" Step 4 "]:}
Step 3
Choose 1 answer:
(A) Step 1
(B) Step 2
(C) Step 3
(D) Step 4

Viet solved a quadratic equation. His work is shown below.\newlineIn which step did Viet make an error?\newline2(x3)2+4=102 2(x-3)^{2}+4=102 \newline2(x3)2amp;=106amp;amp; Step 1 (x3)2amp;=53amp;amp; Step 2 x3amp;=±53amp;amp; Step 3 xamp;=±53+3amp;amp; Step 4  \begin{aligned} 2(x-3)^{2} & =106 & & \text { Step 1 } \\ (x-3)^{2} & =53 & & \text { Step 2 } \\ x-3 & = \pm \sqrt{53} & & \text { Step 3 } \\ x & = \pm \sqrt{53}+3 & & \text { Step 4 } \end{aligned} \newlineStep 33\newlineChoose 11 answer:\newline(A) Step 11\newline(B) Step 22\newline(C) Step 33\newline(D) Step 44

Full solution

Q. Viet solved a quadratic equation. His work is shown below.\newlineIn which step did Viet make an error?\newline2(x3)2+4=102 2(x-3)^{2}+4=102 \newline2(x3)2=106 Step 1 (x3)2=53 Step 2 x3=±53 Step 3 x=±53+3 Step 4  \begin{aligned} 2(x-3)^{2} & =106 & & \text { Step 1 } \\ (x-3)^{2} & =53 & & \text { Step 2 } \\ x-3 & = \pm \sqrt{53} & & \text { Step 3 } \\ x & = \pm \sqrt{53}+3 & & \text { Step 4 } \end{aligned} \newlineStep 33\newlineChoose 11 answer:\newline(A) Step 11\newline(B) Step 22\newline(C) Step 33\newline(D) Step 44
  1. Isolate the variable term: Viet starts by subtracting 44 from both sides of the equation to isolate the term with the variable.\newline2(x3)2+4=1022(x-3)^2 + 4 = 102\newline2(x3)2=10242(x-3)^2 = 102 - 4\newline2(x3)2=982(x-3)^2 = 98
  2. Divide both sides by 22: Viet then divides both sides by 22 to solve for (x3)2(x-3)^2.
    2(x3)2=982(x-3)^2 = 98
    (x3)2=982(x-3)^2 = \frac{98}{2}
    (x3)2=49(x-3)^2 = 49
  3. Take the square root of both sides: Viet takes the square root of both sides to solve for x3x - 3.x3=±49x - 3 = \pm\sqrt{49}x3=±7x - 3 = \pm7
  4. Add 33 to both sides: Viet adds 33 to both sides to solve for xx.\newlinex=±7+3x = \pm 7 + 3\newlinex=3±7x = 3 \pm 7

More problems from Compare linear, exponential, and quadratic growth