Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of 
y=g(x+5) in the 
xy-plane passes through the point 
(-5,4). If 
g is an exponential function, which of the following could define 
g ?
Choose 1 answer:
(A) 
g(x)=-5(4)^(x)+1
(B) 
g(x)=4^(x)
(c) 
g(x)=4((4)/(5))^(x)
(D) 
g(x)=4(2)^(x)-5

The graph of y=g(x+5) y=g(x+5) in the xy x y -plane passes through the point (5,4) (-5,4) . If g g is an exponential function, which of the following could define g g ?\newlineChoose 11 answer:\newline(A) g(x)=5(4)x+1 g(x)=-5(4)^{x}+1 \newline(B) g(x)=4x g(x)=4^{x} \newline(C) g(x)=4(45)x g(x)=4\left(\frac{4}{5}\right)^{x} \newline(D) g(x)=4(2)x5 g(x)=4(2)^{x}-5

Full solution

Q. The graph of y=g(x+5) y=g(x+5) in the xy x y -plane passes through the point (5,4) (-5,4) . If g g is an exponential function, which of the following could define g g ?\newlineChoose 11 answer:\newline(A) g(x)=5(4)x+1 g(x)=-5(4)^{x}+1 \newline(B) g(x)=4x g(x)=4^{x} \newline(C) g(x)=4(45)x g(x)=4\left(\frac{4}{5}\right)^{x} \newline(D) g(x)=4(2)x5 g(x)=4(2)^{x}-5
  1. Substitute and Solve: To find the correct function gg, we need to substitute the given point (5,4)(-5,4) into the equation y=g(x+5)y=g(x+5) and solve for gg. Since the point (5,4)(-5,4) lies on the graph, when x=5x=-5, yy should equal 44.
  2. Check Options: Substituting x=5x=-5 into the equation y=g(x+5)y=g(x+5), we get y=g(0)y=g(0). Since y=4y=4 when x=5x=-5, we have g(0)=4g(0)=4. This means that the value of the function gg at x=0x=0 must be 44.
  3. Option (A): Now we will check each option to see which function satisfies g(0)=4g(0)=4.\newline(A) g(x)=5(4)x+1g(x)=-5(4)^{x}+1\newlineg(0)=5(4)0+1=5(1)+1=5+1=4g(0)=-5(4)^{0}+1=-5(1)+1=-5+1=-4, which does not equal 44.
  4. Option (B): g(x)=4xg(x)=4^{x}g(0)=40=1g(0)=4^{0}=1, which does not equal 44.
  5. Option (C): g(x)=4(45)xg(x)=4\left(\frac{4}{5}\right)^{x}g(0)=4(45)0=4(1)=4g(0)=4\left(\frac{4}{5}\right)^{0}=4(1)=4, which equals 44. This function satisfies the condition g(0)=4g(0)=4.
  6. Option (D): g(x)=4(2)x5g(x)=4(2)^{x}-5g(0)=4(2)05=4(1)5=45=1g(0)=4(2)^{0}-5=4(1)-5=4-5=-1, which does not equal 44.

More problems from Compare linear and exponential growth