Q. The angle θ1 is located in QuadrantIV, and sin(θ1)=−1310.What is the value of cos(θ1) ?Express your answer exactly.cos(θ1)=
Step 1: Find sin(θ1): We know that sin(θ1)=−1310.Use the Pythagorean identity sin2(θ)+cos2(θ)=1 to find the value of cos(θ1).Substitute −1310 for sin(θ1) in sin2(θ1)+cos2(θ1)=1.(−1310)2+cos2(θ1)=1.
Step 2: Use Pythagorean identity: Simplify (−1310)2+cos2(θ1)=1 to find the value of cos2(θ1).169100+cos2(θ1)=1cos2(θ1)=1−169100cos2(θ1)=169169−169100cos2(θ1)=16969
Step 3: Substitute sin(θ1): Find the square root of cos2(θ1) to get cos(θ1).cos(θ1)=±16969cos(θ1)=±1369
Step 4: Simplify the equation: Determine the sign of cos(θ1) based on the quadrant in which θ1 is located.Since θ1 is in Quadrant IV, where cosine is positive, we choose the positive square root.cos(θ1)=1369
More problems from Find trigonometric ratios using multiple identities