Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant
IV, and 
sin(theta_(1))=-(10)/(13).
What is the value of 
cos(theta_(1)) ?
Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant\newlineIV, and sin(θ1)=1013 \sin \left(\theta_{1}\right)=-\frac{10}{13} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant\newlineIV, and sin(θ1)=1013 \sin \left(\theta_{1}\right)=-\frac{10}{13} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Step 11: Find sin(θ1)\sin(\theta_{1}): We know that sin(θ1)=1013\sin(\theta_{1}) = -\frac{10}{13}.\newlineUse the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1)\cos(\theta_{1}).\newlineSubstitute 1013-\frac{10}{13} for sin(θ1)\sin(\theta_{1}) in sin2(θ1)+cos2(θ1)=1\sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1.\newline(1013)2+cos2(θ1)=1\left(-\frac{10}{13}\right)^2 + \cos^2(\theta_{1}) = 1.
  2. Step 22: Use Pythagorean identity: Simplify (1013)2+cos2(θ1)=1(-\frac{10}{13})^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).\newline100169+cos2(θ1)=1\frac{100}{169} + \cos^2(\theta_{1}) = 1\newlinecos2(θ1)=1100169\cos^2(\theta_{1}) = 1 - \frac{100}{169}\newlinecos2(θ1)=169169100169\cos^2(\theta_{1}) = \frac{169}{169} - \frac{100}{169}\newlinecos2(θ1)=69169\cos^2(\theta_{1}) = \frac{69}{169}
  3. Step 33: Substitute sin(θ1)\sin(\theta_{1}): Find the square root of cos2(θ1)\cos^2(\theta_{1}) to get cos(θ1)\cos(\theta_{1}).\newlinecos(θ1)=±69169\cos(\theta_{1}) = \pm\sqrt{\frac{69}{169}}\newlinecos(θ1)=±6913\cos(\theta_{1}) = \pm\frac{\sqrt{69}}{13}
  4. Step 44: Simplify the equation: Determine the sign of cos(θ1)\cos(\theta_{1}) based on the quadrant in which θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant IV, where cosine is positive, we choose the positive square root.\newlinecos(θ1)=6913\cos(\theta_{1}) = \frac{\sqrt{69}}{13}

More problems from Find trigonometric ratios using multiple identities