Q. The angle θ1 is located in Quadrant IV, and sin(θ1)=−2524.What is the value of cos(θ1) ? Express your answer exactly.cos(θ1)=
Step 1: Find sin(θ1): We know that sin(θ1)=−2524. Use the Pythagorean identity sin2(θ)+cos2(θ)=1 to find the value of cos(θ1).Substitute −2524 for sin(θ1) in sin2(θ1)+cos2(θ1)=1.(−2524)2+cos2(θ1)=1.
Step 2: Substitute sin(θ1) in Pythagorean identity: Simplify (−2524)2+cos2(θ1)=1 to find the value of cos2(θ1). (2524)2+cos2(θ1)=1 (625576)+cos2(θ1)=1 cos2(θ1)=1−(625576) cos2(θ1)=(625625)−(625576) cos2(θ1)=62549
Step 3: Simplify the equation: Find the square root of cos2(θ1) to get cos(θ1).cos(θ1)=±62549cos(θ1)=±257
Step 4: Calculate cos(θ1): Determine the sign of cos(θ1) based on the quadrant in which θ1 is located.Since θ1 is in Quadrant IV, cos(θ1) is positive.cos(θ1)=257
More problems from Find trigonometric ratios using multiple identities