Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant IV, and 
sin(theta_(1))=-(24)/(25).
What is the value of 
cos(theta_(1)) ? Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant IV, and sin(θ1)=2425 \sin \left(\theta_{1}\right)=-\frac{24}{25} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant IV, and sin(θ1)=2425 \sin \left(\theta_{1}\right)=-\frac{24}{25} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Step 11: Find sin(θ1) \sin(\theta_{1}) : We know that sin(θ1)=2425 \sin(\theta_{1}) = -\frac{24}{25} . Use the Pythagorean identity sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1) \cos(\theta_{1}) .\newlineSubstitute 2425 -\frac{24}{25} for sin(θ1) \sin(\theta_{1}) in sin2(θ1)+cos2(θ1)=1 \sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1 .\newline(2425)2+cos2(θ1)=1 \left(-\frac{24}{25}\right)^2 + \cos^2(\theta_{1}) = 1 .
  2. Step 22: Substitute sin(θ1)\sin(\theta_{1}) in Pythagorean identity: Simplify (2425)2+cos2(θ1)=1(-\frac{24}{25})^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).
    (2425)2+cos2(θ1)=1\left(\frac{24}{25}\right)^2 + \cos^2(\theta_{1}) = 1
    (576625)+cos2(θ1)=1\left(\frac{576}{625}\right) + \cos^2(\theta_{1}) = 1
    cos2(θ1)=1(576625)\cos^2(\theta_{1}) = 1 - \left(\frac{576}{625}\right)
    cos2(θ1)=(625625)(576625)\cos^2(\theta_{1}) = \left(\frac{625}{625}\right) - \left(\frac{576}{625}\right)
    cos2(θ1)=49625\cos^2(\theta_{1}) = \frac{49}{625}
  3. Step 33: Simplify the equation: Find the square root of cos2(θ1)\cos^2(\theta_{1}) to get cos(θ1)\cos(\theta_{1}).cos(θ1)=±49625\cos(\theta_{1}) = \pm\sqrt{\frac{49}{625}}cos(θ1)=±725\cos(\theta_{1}) = \pm\frac{7}{25}
  4. Step 44: Calculate cos(θ1)\cos(\theta_{1}): Determine the sign of cos(θ1)\cos(\theta_{1}) based on the quadrant in which θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant IV, cos(θ1)\cos(\theta_{1}) is positive.\newlinecos(θ1)=725\cos(\theta_{1}) = \frac{7}{25}

More problems from Find trigonometric ratios using multiple identities