Q. The angle θ1 is located in Quadrant III, and sin(θ1)=−1312.What is the value of cos(θ1) ? Express your answer exactly.cos(θ1)=
Step 1: Find sin(θ1): We know that sin(θ1)=−1312.Use the Pythagorean identity sin2(θ)+cos2(θ)=1 to find the value of cos(θ1).Substitute −1312 for sin(θ1) in sin2(θ1)+cos2(θ1)=1.(−1312)2+cos2(θ1)=1.
Step 2: Use Pythagorean identity: Simplify (−1312)2+cos2(θ1)=1 to find the value of cos2(θ1).169144+cos2(θ1)=1cos2(θ1)=1−169144cos2(θ1)=169169−169144cos2(θ1)=16925
Step 3: Substitute sin(θ1): Find the square root of cos2(θ1) to get cos(θ1).cos(θ1)=±16925cos(θ1)=±135
Step 4: Simplify the equation: Determine the sign of cos(θ1) based on the quadrant in which θ1 is located.Since θ1 is in Quadrant III, both sine and cosine are negative.Therefore, cos(θ1) is negative.cos(θ1)=−135
More problems from Find trigonometric ratios using multiple identities