Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant III, and 
sin(theta_(1))=-(12)/(13).
What is the value of 
cos(theta_(1)) ? Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant III, and sin(θ1)=1213 \sin \left(\theta_{1}\right)=-\frac{12}{13} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant III, and sin(θ1)=1213 \sin \left(\theta_{1}\right)=-\frac{12}{13} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Step 11: Find sin(θ1) \sin(\theta_{1}) : We know that sin(θ1)=1213 \sin(\theta_{1}) = -\frac{12}{13} .\newlineUse the Pythagorean identity sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1) \cos(\theta_{1}) .\newlineSubstitute 1213 -\frac{12}{13} for sin(θ1) \sin(\theta_{1}) in sin2(θ1)+cos2(θ1)=1 \sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1 .\newline(1213)2+cos2(θ1)=1 \left(-\frac{12}{13}\right)^2 + \cos^2(\theta_{1}) = 1 .
  2. Step 22: Use Pythagorean identity: Simplify (1213)2+cos2(θ1)=1(-\frac{12}{13})^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).\newline144169+cos2(θ1)=1\frac{144}{169} + \cos^2(\theta_{1}) = 1\newlinecos2(θ1)=1144169\cos^2(\theta_{1}) = 1 - \frac{144}{169}\newlinecos2(θ1)=169169144169\cos^2(\theta_{1}) = \frac{169}{169} - \frac{144}{169}\newlinecos2(θ1)=25169\cos^2(\theta_{1}) = \frac{25}{169}
  3. Step 33: Substitute sin(θ1)\sin(\theta_{1}): Find the square root of cos2(θ1)\cos^2(\theta_{1}) to get cos(θ1)\cos(\theta_{1}).\newlinecos(θ1)=±25169\cos(\theta_{1}) = \pm\sqrt{\frac{25}{169}}\newlinecos(θ1)=±513\cos(\theta_{1}) = \pm\frac{5}{13}
  4. Step 44: Simplify the equation: Determine the sign of cos(θ1)\cos(\theta_{1}) based on the quadrant in which θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant III, both sine and cosine are negative.\newlineTherefore, cos(θ1)\cos(\theta_{1}) is negative.\newlinecos(θ1)=513\cos(\theta_{1}) = -\frac{5}{13}

More problems from Find trigonometric ratios using multiple identities