Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant III, and 
sin(theta_(1))=-(sqrt3)/(2).
What is the value of 
cos(theta_(1)) ? Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant III, and sin(θ1)=32 \sin \left(\theta_{1}\right)=-\frac{\sqrt{3}}{2} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant III, and sin(θ1)=32 \sin \left(\theta_{1}\right)=-\frac{\sqrt{3}}{2} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Step 11: Find sin(θ1) \sin(\theta_{1}) : We know that sin(θ1)=32 \sin(\theta_{1}) = -\frac{\sqrt{3}}{2} . Use the Pythagorean identity sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1) \cos(\theta_{1}) .\newlineSubstitute 32 -\frac{\sqrt{3}}{2} for sin(θ1) \sin(\theta_{1}) in sin2(θ1)+cos2(θ1)=1 \sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1 .\newline(32)2+cos2(θ1)=1 \left(-\frac{\sqrt{3}}{2}\right)^2 + \cos^2(\theta_{1}) = 1 .
  2. Step 22: Substitute sin(θ1)\sin(\theta_{1}) in the Pythagorean identity: Simplify (3/2)2+cos2(θ1)=1(-\sqrt{3}/2)^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).\newline(3/4)+cos2(θ1)=1(3/4) + \cos^2(\theta_{1}) = 1\newlinecos2(θ1)=13/4\cos^2(\theta_{1}) = 1 - 3/4\newlinecos2(θ1)=1/4\cos^2(\theta_{1}) = 1/4
  3. Step 33: Simplify the equation: Since cos2(θ1)=14\cos^2(\theta_{1}) = \frac{1}{4}, we take the square root of both sides to find cos(θ1)\cos(\theta_{1}).\newlinecos(θ1)=±14\cos(\theta_{1}) = \pm \sqrt{\frac{1}{4}}\newlinecos(θ1)=±12\cos(\theta_{1}) = \pm \frac{1}{2}
  4. Step 44: Find the value of cos(θ1)\cos(\theta_{1}): Determine the sign of cos(θ1)\cos(\theta_{1}) based on the quadrant in which θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant III, both sine and cosine are negative.\newlineTherefore, cos(θ1)\cos(\theta_{1}) is negative.\newlinecos(θ1)=12\cos(\theta_{1}) = -\frac{1}{2}

More problems from Find trigonometric ratios using multiple identities