Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant II, and 
sin(theta_(1))=(9)/(41).
What is the value of 
cos(theta_(1)) ? Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant II, and sin(θ1)=941 \sin \left(\theta_{1}\right)=\frac{9}{41} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant II, and sin(θ1)=941 \sin \left(\theta_{1}\right)=\frac{9}{41} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Step 11: Find sin(θ1) \sin(\theta_{1}) : We know that sin(θ1)=941 \sin(\theta_{1}) = \frac{9}{41} . Use the Pythagorean identity sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 to find cos(θ1) \cos(\theta_{1}) .\newlineSubstitute 941 \frac{9}{41} for sin(θ1) \sin(\theta_{1}) in sin2(θ1)+cos2(θ1)=1 \sin^2(\theta_{1}) + \cos^2(\theta_{1}) = 1 .\newline(941)2+cos2(θ1)=1 \left(\frac{9}{41}\right)^2 + \cos^2(\theta_{1}) = 1 .
  2. Step 22: Substitute sin(θ1)\sin(\theta_{1}) in the Pythagorean identity: Simplify (941)2+cos2(θ1)=1\left(\frac{9}{41}\right)^2 + \cos^2(\theta_{1}) = 1 to find the value of cos(θ1)\cos(\theta_{1}).\newline(811681)+cos2(θ1)=1\left(\frac{81}{1681}\right) + \cos^2(\theta_{1}) = 1\newlinecos2(θ1)=1811681\cos^2(\theta_{1}) = 1 - \frac{81}{1681}\newlinecos2(θ1)=16811681811681\cos^2(\theta_{1}) = \frac{1681}{1681} - \frac{81}{1681}\newlinecos2(θ1)=16001681\cos^2(\theta_{1}) = \frac{1600}{1681}
  3. Step 33: Simplify the equation: Since we are looking for cos(θ1)\cos(\theta_{1}), we take the square root of both sides.\newlinecos(θ1)=±16001681\cos(\theta_{1}) = \pm\sqrt{\frac{1600}{1681}}\newlinecos(θ1)=±4041\cos(\theta_{1}) = \pm\frac{40}{41}
  4. Step 44: Find the value of cos(θ1)\cos(\theta_{1}): Determine the sign of cos(θ1)\cos(\theta_{1}) based on the quadrant in which θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant II, where cosine is negative, we choose the negative value.\newlinecos(θ1)=4041\cos(\theta_{1}) = -\frac{40}{41}

More problems from Find trigonometric ratios using multiple identities