Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant II, and 
cos(theta_(1))=-(12)/(19).
What is the value of 
sin(theta_(1)) ? Express your answer exactly.

sin(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant II, and cos(θ1)=1219 \cos \left(\theta_{1}\right)=-\frac{12}{19} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ? Express your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant II, and cos(θ1)=1219 \cos \left(\theta_{1}\right)=-\frac{12}{19} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ? Express your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=
  1. Pythagorean identity: We know that for any angle θ\theta, sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 (Pythagorean identity).\newlineGiven that cos(θ1)=1219\cos(\theta_{1}) = -\frac{12}{19}, we can find sin(θ1)\sin(\theta_{1}) by rearranging the Pythagorean identity to solve for sin2(θ1)\sin^2(\theta_{1}).\newlinesin2(θ1)=1cos2(θ1)\sin^2(\theta_{1}) = 1 - \cos^2(\theta_{1})
  2. Rearranging the Pythagorean identity: Substitute the given value of cos(θ1) \cos(\theta_{1}) into the equation.sin2(θ1)=1((1219))2\sin^2(\theta_{1}) = 1 - (-\left(\frac{12}{19}\right))^2sin2(θ1)=1(144361)\sin^2(\theta_{1}) = 1 - \left(\frac{144}{361}\right)
  3. Substituting the given value: Simplify the right side of the equation.\newlinesin2(θ1)=361361144361\sin^2(\theta_{1}) = \frac{361}{361} - \frac{144}{361}\newlinesin2(θ1)=361144361\sin^2(\theta_{1}) = \frac{361 - 144}{361}\newlinesin2(θ1)=217361\sin^2(\theta_{1}) = \frac{217}{361}
  4. Simplifying the equation: Take the square root of both sides to find sin(θ1)\sin(\theta_{1}). Since θ1\theta_{1} is in Quadrant II, sin(θ1)\sin(\theta_{1}) is positive.\newlinesin(θ1)=217361\sin(\theta_{1}) = \sqrt{\frac{217}{361}}\newlinesin(θ1)=21719\sin(\theta_{1}) = \frac{\sqrt{217}}{19}

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity