Q. The angle θ1 is located in Quadrant I, and sin(θ1)=2017.What is the value of cos(θ1) ? Express your answer exactly.cos(θ1)=
Step 1: Substitute sin(θ1) in the Pythagorean identity: We know that sin(θ1)=2017. Use the Pythagorean identity sin2(θ)+cos2(θ)=1 to find the value of cos(θ1).Substitute 2017 for sin(θ1) in sin2(θ)+cos2(θ)=1.(2017)2+cos2(θ1)=1.
Step 2: Simplify the equation: Simplify (2017)2+cos2(θ1)=1 to find the value of cos2(θ1).(2017)2=400289.cos2(θ1)=1−400289.cos2(θ1)=400400−400289.cos2(θ1)=400111.
Step 3: Calculate cos2(θ1): Since θ1 is in Quadrant I, where all trigonometric functions are positive, cos(θ1) will be positive.Therefore, cos(θ1)=400111.cos(θ1)=400111.cos(θ1)=20111.
More problems from Find trigonometric ratios using multiple identities