Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant I, and 
sin(theta_(1))=(17)/(20).
What is the value of 
cos(theta_(1)) ? Express your answer exactly.

cos(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant I, and sin(θ1)=1720 \sin \left(\theta_{1}\right)=\frac{17}{20} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant I, and sin(θ1)=1720 \sin \left(\theta_{1}\right)=\frac{17}{20} .\newlineWhat is the value of cos(θ1) \cos \left(\theta_{1}\right) ? Express your answer exactly.\newlinecos(θ1)= \cos \left(\theta_{1}\right)=
  1. Step 11: Substitute sin(θ1)\sin(\theta_{1}) in the Pythagorean identity: We know that sin(θ1)=1720\sin(\theta_{1}) = \frac{17}{20}. Use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1 to find the value of cos(θ1)\cos(\theta_{1}).\newlineSubstitute 1720\frac{17}{20} for sin(θ1)\sin(\theta_{1}) in sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1.\newline(1720)2+cos2(θ1)=1\left(\frac{17}{20}\right)^2 + \cos^2(\theta_{1}) = 1.
  2. Step 22: Simplify the equation: Simplify (1720)2+cos2(θ1)=1(\frac{17}{20})^2 + \cos^2(\theta_{1}) = 1 to find the value of cos2(θ1)\cos^2(\theta_{1}).(1720)2=289400.(\frac{17}{20})^2 = \frac{289}{400}.cos2(θ1)=1289400.\cos^2(\theta_{1}) = 1 - \frac{289}{400}.cos2(θ1)=400400289400.\cos^2(\theta_{1}) = \frac{400}{400} - \frac{289}{400}.cos2(θ1)=111400.\cos^2(\theta_{1}) = \frac{111}{400}.
  3. Step 33: Calculate cos2(θ1)\cos^2(\theta_1): Since θ1\theta_1 is in Quadrant I, where all trigonometric functions are positive, cos(θ1)\cos(\theta_1) will be positive.\newlineTherefore, cos(θ1)=111400\cos(\theta_1) = \sqrt{\frac{111}{400}}.\newlinecos(θ1)=111400\cos(\theta_1) = \frac{\sqrt{111}}{\sqrt{400}}.\newlinecos(θ1)=11120\cos(\theta_1) = \frac{\sqrt{111}}{20}.

More problems from Find trigonometric ratios using multiple identities