Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The angle 
theta_(1) is located in Quadrant
I, and 
cos(theta_(1))=(3)/(8).
What is the value of 
sin(theta_(1)) ?
Express your answer exactly.

sin(theta_(1))=

The angle θ1 \theta_{1} is located in Quadrant\newlineI, and cos(θ1)=38 \cos \left(\theta_{1}\right)=\frac{3}{8} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=

Full solution

Q. The angle θ1 \theta_{1} is located in Quadrant\newlineI, and cos(θ1)=38 \cos \left(\theta_{1}\right)=\frac{3}{8} .\newlineWhat is the value of sin(θ1) \sin \left(\theta_{1}\right) ?\newlineExpress your answer exactly.\newlinesin(θ1)= \sin \left(\theta_{1}\right)=
  1. Use Pythagorean Identity: We know that cos(θ1)=38\cos(\theta_{1}) = \frac{3}{8} and θ1\theta_{1} is in Quadrant I. Use the Pythagorean identity sin2(θ1)+cos2(θ1)=1\sin^{2}(\theta_{1}) + \cos^{2}(\theta_{1}) = 1 to find sin(θ1)\sin(\theta_{1}).\newlineSubstitute 38\frac{3}{8} for cos(θ1)\cos(\theta_{1}) in the identity.\newlinesin2(θ1)+(38)2=1\sin^{2}(\theta_{1}) + \left(\frac{3}{8}\right)^{2} = 1.
  2. Simplify to Find sin(θ):\sin(\theta): Simplify (38)2+sin2(θ1)=1(\frac{3}{8})^2 + \sin^2(\theta_{1}) = 1 to find the value of sin2(θ1)\sin^2(\theta_{1}).(38)2=964\left(\frac{3}{8}\right)^2 = \frac{9}{64}.sin2(θ1)=1964\sin^2(\theta_{1}) = 1 - \frac{9}{64}.sin2(θ1)=(6464)(964)\sin^2(\theta_{1}) = \left(\frac{64}{64}\right) - \left(\frac{9}{64}\right).sin2(θ1)=5564\sin^2(\theta_{1}) = \frac{55}{64}.
  3. Find sin(θ):\sin(\theta): Find the square root of sin2(θ1)\sin^2(\theta_{1}) to get sin(θ1)\sin(\theta_{1}).\newlinesin(θ1)=±5564.\sin(\theta_{1}) = \pm\sqrt{\frac{55}{64}}.\newlinesin(θ1)=±55/8.\sin(\theta_{1}) = \pm\sqrt{55}/8.
  4. Determine Sign of sin(θ)\sin(\theta): Determine the sign of sin(θ1)\sin(\theta_{1}) based on the quadrant where θ1\theta_{1} is located.\newlineSince θ1\theta_{1} is in Quadrant I, where both sine and cosine are positive, sin(θ1)\sin(\theta_{1}) will be positive.\newlinesin(θ1)=558.\sin(\theta_{1}) = \sqrt{\frac{55}{8}}.

More problems from Find trigonometric ratios using multiple identities