Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

R=380(1.08)^(t)
The given equation models the revenue in thousands of dollars, 
R, of a company 
t years after 2012 . Of the following, which equation models the revenue of the company 
q quarters after 2012 ?
Choose 1 answer:
(A) 
R=380(1.02)^(4q)
(B) 
quad R=380(1.36)^(q)
(c) 
R=380(1.08)^((q)/(4))
(D) 
R=380(1.08)^(4q)

R=380(1.08)t R=380(1.08)^{t} \newlineThe given equation models the revenue in thousands of dollars, R R , of a company t t years after 20122012 . Of the following, which equation models the revenue of the company q q quarters after 20122012 ?\newlineChoose 11 answer:\newline(A) R=380(1.02)4q R=380(1.02)^{4 q} \newline(B) R=380(1.36)q R=380(1.36)^{q} \newline(C) R=380(1.08)q4 R=380(1.08)^{\frac{q}{4}} \newline(D) R=380(1.08)4q R=380(1.08)^{4 q}

Full solution

Q. R=380(1.08)t R=380(1.08)^{t} \newlineThe given equation models the revenue in thousands of dollars, R R , of a company t t years after 20122012 . Of the following, which equation models the revenue of the company q q quarters after 20122012 ?\newlineChoose 11 answer:\newline(A) R=380(1.02)4q R=380(1.02)^{4 q} \newline(B) R=380(1.36)q R=380(1.36)^{q} \newline(C) R=380(1.08)q4 R=380(1.08)^{\frac{q}{4}} \newline(D) R=380(1.08)4q R=380(1.08)^{4 q}
  1. Convert Annual Growth Rate to Quarterly Growth Rate: To model the revenue qq quarters after 20122012, you need to convert years into quarters. Since 11 year equals 44 quarters, you can substitute t=4qt = 4q into the original equation: R=380(1.08)tR = 380(1.08)^t
  2. Substitute the values: Substitute 4q4q for tt in R=380(1.08)tR = 380(1.08)^t.\newlineWe get: R=380(1.08)4qR = 380(1.08)^{4q}\newlineLooking at the answer choices, option (D) R=380(1.08)4qR = 380(1.08)^{4q} matches our derived equation and represents the revenue RR in thousands of dollars qq quarters after 20122012.

More problems from Compare linear and exponential growth