Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=root(3)(x)-x
Choose 1 answer:
(A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=x3x f(x)=\sqrt[3]{x}-x \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=x3x f(x)=\sqrt[3]{x}-x \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Determining Function Symmetry: To determine if the function f(x)=x3xf(x) = \sqrt[3]{x} - x is even, odd, or neither, we need to check the symmetry properties of the function. A function is even if f(x)=f(x)f(-x) = f(x) for all xx in the domain, and it is odd if f(x)=f(x)f(-x) = -f(x) for all xx in the domain.
  2. Checking for Even Symmetry: First, let's check if the function is even. We calculate f(x)f(-x) and see if it is equal to f(x)f(x).\newlinef(x)=x3(x)=x3+xf(-x) = \sqrt[3]{-x} - (-x) = -\sqrt[3]{x} + x\newlineNow we compare this to f(x)f(x):\newlinef(x)=x3xf(x) = \sqrt[3]{x} - x\newlineClearly, f(x)f(-x) is not equal to f(x)f(x), so the function is not even.
  3. Checking for Odd Symmetry: Next, let's check if the function is odd. We calculate f(x)f(-x) and see if it is equal to f(x)-f(x).\newlineWe already have f(x)f(-x) from the previous step:\newlinef(x)=x3+xf(-x) = -\sqrt[3]{x} + x\newlineNow we calculate f(x)-f(x):\newlinef(x)=1×(x3x)=x3+x-f(x) = -1 \times (\sqrt[3]{x} - x) = -\sqrt[3]{x} + x\newlineWe see that f(x)f(-x) is equal to f(x)-f(x), so the function is odd.

More problems from Symmetry and periodicity of trigonometric functions