Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=5x
Choose 1 answer:
(A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=5x f(x)=5 x \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=5x f(x)=5 x \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Symmetry properties of the function: To determine if the function f(x)=5xf(x) = 5x is even, odd, or neither, we need to check the symmetry properties of the function. An even function satisfies the condition f(x)=f(x)f(x) = f(-x) for all xx in its domain, while an odd function satisfies the condition f(x)=f(x)f(-x) = -f(x) for all xx in its domain.
  2. Checking if f(x)f(x) is even: Let's check if f(x)f(x) is even. We substitute x-x for xx in the function and see if it equals f(x)f(x):f(x)=5(x)=5x.f(-x) = 5(-x) = -5x.Now we compare this to f(x)f(x):f(x)=5x.f(x) = 5x.Since f(x)f(-x) does not equal f(x)f(x), the function is not even.
  3. Comparing f(x)f(-x) and f(x)f(x): Next, let's check if f(x)f(x) is odd. We already have f(x)=5xf(-x) = -5x from the previous step. Now we compare this to f(x)-f(x):f(x)=5x-f(x) = -5x. Since f(x)f(-x) equals f(x)-f(x), the function is odd.

More problems from Symmetry and periodicity of trigonometric functions