Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
y=(x^(2)-1)(x+4)-9, what is the value of 
y when 
x=1 ?
Choose 1 answer:
(A) -9
(B) -5
(C) -4
(D) 0

If y=(x21)(x+4)9 y=\left(x^{2}-1\right)(x+4)-9 , what is the value of y y when x=1 x=1 ?\newlineChoose 11 answer:\newline(A) 9-9\newline(B) 5-5\newline(C) 4-4\newline(D) 00

Full solution

Q. If y=(x21)(x+4)9 y=\left(x^{2}-1\right)(x+4)-9 , what is the value of y y when x=1 x=1 ?\newlineChoose 11 answer:\newline(A) 9-9\newline(B) 5-5\newline(C) 4-4\newline(D) 00
  1. Substitute x=1x=1: First, we need to substitute x=1x=1 into the function y=(x21)(x+4)9y=(x^{2}-1)(x+4)-9 to find the value of yy.
  2. Calculate x21x^{2}-1: Calculate the value of x21x^{2}-1 when x=1x=1.\newlinex21=(1)21=11=0x^{2}-1 = (1)^{2}-1 = 1-1 = 0
  3. Calculate x+4x+4: Calculate the value of x+4x+4 when x=1x=1.\newlinex+4=1+4=5x+4 = 1+4 = 5
  4. Multiply results: Now, multiply the results from the previous steps: x^{2}-1)(x+4)\. Since \$x^{2}-1 is 00, the product will be 00 regardless of the value of x+4x+4. $0 \times 5 = 0
  5. Subtract 99: Finally, subtract 99 from the result of the multiplication to find the value of yy.\newliney=09=9y = 0 - 9 = -9

More problems from Compare linear and exponential growth