Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
b^(3)*(b^(4))^(2)=b^(x), what is the value of 
x ?
Choose 1 answer:
(A) 9
(B) 11
(C) 18
(D) 19

If b3(b4)2=bx b^{3} \cdot\left(b^{4}\right)^{2}=b^{x} , what is the value of x x ?\newlineChoose 11 answer:\newline(A) 99\newline(B) 1111\newline(C) 1818\newline(D) 1919

Full solution

Q. If b3(b4)2=bx b^{3} \cdot\left(b^{4}\right)^{2}=b^{x} , what is the value of x x ?\newlineChoose 11 answer:\newline(A) 99\newline(B) 1111\newline(C) 1818\newline(D) 1919
  1. Simplify using properties of exponents: We need to simplify the left side of the equation using the properties of exponents. The property (bm)n=bmn(b^{m})^{n} = b^{m*n} allows us to simplify (b4)2(b^{4})^{2}.
  2. Apply property to simplify: Using the property, we get (b4)2=b4×2=b8(b^{4})^{2} = b^{4\times2} = b^{8}.
  3. Combine exponents: Now we have b3b8b^{3} * b^{8}. Using the property of exponents that states bmbn=bm+nb^{m} * b^{n} = b^{m+n}, we can combine the exponents.
  4. Apply equality of exponents: Combining the exponents, we get b(3+8)=b11b^{(3+8)} = b^{11}.
  5. Determine the value of xx: Now we have the equation b11=bxb^{11} = b^{x}. Since the bases are the same and the equation is an equality, the exponents must be equal.
  6. Determine the value of xx: Now we have the equation b11=bxb^{11} = b^{x}. Since the bases are the same and the equation is an equality, the exponents must be equal.Therefore, xx must be equal to 1111.

More problems from Compare linear and exponential growth