Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
(24)/(O+P)=5, which of the following correctly expresses 
O in terms of 
P ?
Choose 1 answer:
(A) 
O=(5)/(24)-P
(B) 
O=(24)/(5)-P
(c) 
O=(24)/(5)+P
(D) 
O=120-P

If 24O+P=5 \frac{24}{O+P}=5 , which of the following correctly expresses O O in terms of P P ?\newlineChoose 11 answer:\newline(A) O=524P O=\frac{5}{24}-P \newlineB O=245P O=\frac{24}{5}-P \newline(c) O=245+P O=\frac{24}{5}+P \newline(D) O=120P O=120-P

Full solution

Q. If 24O+P=5 \frac{24}{O+P}=5 , which of the following correctly expresses O O in terms of P P ?\newlineChoose 11 answer:\newline(A) O=524P O=\frac{5}{24}-P \newlineB O=245P O=\frac{24}{5}-P \newline(c) O=245+P O=\frac{24}{5}+P \newline(D) O=120P O=120-P
  1. Multiply both sides: We are given the equation 24O+P=5\frac{24}{O+P} = 5. To find OO in terms of PP, we need to solve for OO. First, we multiply both sides of the equation by (O+P)(O+P) to get rid of the denominator. 24=5(O+P)24 = 5(O + P)
  2. Distribute the 55: Next, we distribute the 55 on the right side of the equation. 24=5O+5P24 = 5O + 5P
  3. Subtract 5P5P: Now, we want to isolate OO, so we subtract 5P5P from both sides of the equation.\newline245P=5O24 - 5P = 5O
  4. Divide by 55: Finally, we divide both sides of the equation by 55 to solve for OO.245P5=O\frac{24 - 5P}{5} = O
  5. Simplify the expression: Simplify the expression for OO.O=2455P5O = \frac{24}{5} - \frac{5P}{5}O=245PO = \frac{24}{5} - P

More problems from Compare linear and exponential growth