Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
2^(m)=x and 
7^(n)=y, then which of the following is equivalent to 
784^(mn) ?
Choose 1 answer:
(A) 
x^(2m)*y^(4n)
(B) 
x^(2n)*y^(4m)
(C) 
x^(4m)*y^(2n)
(D) 
x^(4n)*y^(2m)

If 2m=x 2^{m}=x and 7n=y 7^{n}=y , then which of the following is equivalent to 784mn 784^{m n} ?\newlineChoose 11 answer:\newline(A) x2my4n x^{2 m} \cdot y^{4 n} \newline(B) x2ny4m x^{2 n} \cdot y^{4 m} \newline(C) x4my2n x^{4 m} \cdot y^{2 n} \newline(D) x4ny2m x^{4 n} \cdot y^{2 m}

Full solution

Q. If 2m=x 2^{m}=x and 7n=y 7^{n}=y , then which of the following is equivalent to 784mn 784^{m n} ?\newlineChoose 11 answer:\newline(A) x2my4n x^{2 m} \cdot y^{4 n} \newline(B) x2ny4m x^{2 n} \cdot y^{4 m} \newline(C) x4my2n x^{4 m} \cdot y^{2 n} \newline(D) x4ny2m x^{4 n} \cdot y^{2 m}
  1. Expressing 784784 as Prime Factors: First, let's express 784784 as a product of its prime factors.\newline784=24×72784 = 2^4 \times 7^2\newlineThis is because 784784 is divisible by 22 four times (2×2×2×2=162 \times 2 \times 2 \times 2 = 16) and by 77 twice (7×7=497 \times 7 = 49), and 16×49=78416 \times 49 = 784.
  2. Raising Prime Factorization to Power: Now, let's raise this prime factorization to the power of mnmn: \newline(24×72)mn=(24mn)×(72mn)(2^4 \times 7^2)^{mn} = (2^{4mn}) \times (7^{2mn})\newlineWe distribute the exponent mnmn to both 242^4 and 727^2.
  3. Substituting Variables: Next, we substitute xx for 2m2^m and yy for 7n7^n according to the given information:\newline2m=x2^{m} = x and 7n=y7^{n} = y\newlineSo, 24mn2^{4mn} becomes x4nx^{4n} and 72mn7^{2mn} becomes y2my^{2m}.
  4. Writing the Expression with Substituted Variables: Now, we write the expression with the substituted variables:\newline(24mn)×(72mn)=x4n×y2m(2^{4mn}) \times (7^{2mn}) = x^{4n} \times y^{2m}\newlineThis matches one of the answer choices.
  5. Comparing with Answer Choices: We compare our expression with the answer choices:\newline(A) x2my4nx^{2m} \cdot y^{4n}\newline(B) x2ny4mx^{2n} \cdot y^{4m}\newline(C) x4my2nx^{4m} \cdot y^{2n}\newline(D) x4ny2mx^{4n} \cdot y^{2m}\newlineOur expression is x4ny2mx^{4n} \cdot y^{2m}, which matches answer choice (D).

More problems from Compare linear and exponential growth