Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
(1)/(2)+(2)/(5)s=s-(3)/(4), what is the value of 
s ?
Choose 1 answer:
(A) 
s=(3)/(4)
(B) 
s=(25)/(12)
(C) 
s=-(25)/(12)
(D) 
s=-(3)/(4)

If 12+25s=s34\frac{1}{2}+\frac{2}{5}s=s-\frac{3}{4}, what is the value of ss?\newlineChoose 11 answer:\newline(A) s=34s=\frac{3}{4}\newline(B) s=2512s=\frac{25}{12}\newline(C) s=2512s=-\frac{25}{12}\newline(D) s=34s=-\frac{3}{4}

Full solution

Q. If 12+25s=s34\frac{1}{2}+\frac{2}{5}s=s-\frac{3}{4}, what is the value of ss?\newlineChoose 11 answer:\newline(A) s=34s=\frac{3}{4}\newline(B) s=2512s=\frac{25}{12}\newline(C) s=2512s=-\frac{25}{12}\newline(D) s=34s=-\frac{3}{4}
  1. Write and Identify Equation: Write down the given equation and identify the type of problem.\newlineWe have the equation (12)+(25)s=s(34)(\frac{1}{2}) + (\frac{2}{5})s = s - (\frac{3}{4}). This is a linear equation in one variable, ss.
  2. Combine Like Terms: Combine like terms by moving all terms involving ss to one side of the equation and constants to the other side.\newlineSubtract 25s\frac{2}{5}s from both sides to get all the ss terms on one side:\newline12=s25s34\frac{1}{2} = s - \frac{2}{5}s - \frac{3}{4}.
  3. Find Common Denominator: Find a common denominator for the constants and combine them.\newlineThe common denominator for 22 and 44 is 44, so we convert (1/2)(1/2) to (2/4)(2/4):\newline(2/4)=s(2/5)s(3/4)(2/4) = s - (2/5)s - (3/4).
  4. Combine Constants: Combine the constants on the right side of the equation.\newline(24)(34)=s(25)s.(\frac{2}{4}) - (\frac{3}{4}) = s - (\frac{2}{5})s.\newlineThis simplifies to:\newline(14)=s(25)s.(-\frac{1}{4}) = s - (\frac{2}{5})s.
  5. Combine Like Terms with ss: Combine like terms involving ss on the right side of the equation.\newlineTo combine s25ss - \frac{2}{5}s, we need a common denominator for the coefficients of ss, which is 55:\newline(14)=(55)s(25)s.\left(-\frac{1}{4}\right) = \left(\frac{5}{5}\right)s - \left(\frac{2}{5}\right)s.\newlineThis simplifies to:\newline(14)=(35)s.\left(-\frac{1}{4}\right) = \left(\frac{3}{5}\right)s.
  6. Solve for s: Solve for s by dividing both sides of the equation by the coefficient of s.\newlineDivide both sides by (35)(\frac{3}{5}) to isolate s:\newlines=1435s = \frac{-\frac{1}{4}}{\frac{3}{5}}.
  7. Calculate Value of \newline: Calculate the value of ss.\newlineTo divide by a fraction, we multiply by its reciprocal:\newlines=(14)×(53)s = (-\frac{1}{4}) \times (\frac{5}{3}).\newlineThis simplifies to:\newlines=512s = -\frac{5}{12}.

More problems from Compare linear and exponential growth