Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

8^(3)*8^(-5)*8^(y)=8^(-2)=(1)/(8^(2))

83858y=82=182 8^{3} \cdot 8^{-5} \cdot 8^{y}=8^{-2}=\frac{1}{8^{2}}

Full solution

Q. 83858y=82=182 8^{3} \cdot 8^{-5} \cdot 8^{y}=8^{-2}=\frac{1}{8^{2}}
  1. Combine Powers of 88: Combine the powers of 88 using the property of exponents that states when you multiply powers with the same base, you add the exponents.\newline83×85×8y=835+y8^{3} \times 8^{-5} \times 8^{y} = 8^{3 - 5 + y}
  2. Simplify Exponents: Simplify the exponents by adding 33 and 5-5. \newline8(35+y)=8(2+y)8^{(3 - 5 + y)} = 8^{(-2 + y)}\newline8(2+y)=8(2)8^{(-2 + y)} = 8^{(-2)}
  3. Apply Exponent Rule: Since the bases are the same and the equation is an equality, the exponents must be equal. \newline2+y=2-2 + y = -2
  4. Solve for y: Solve for y by adding 22 to both sides of the equation.\newline2+y+2=2+2-2 + y + 2 = -2 + 2\newliney=0y = 0

More problems from Operations with rational exponents