The functions f(x)=2x,f(x)=2⋅2x, and f(x)=21⋅2x all have the same nuultiplier.a. What is the multiplier for these functions? Make an x→f(x) table for each of the functions, using integer value of x for x=−3 to x=5. How can you use the tables to determine the multipliers?
Q. The functions f(x)=2x,f(x)=2⋅2x, and f(x)=21⋅2x all have the same nuultiplier.a. What is the multiplier for these functions? Make an x→f(x) table for each of the functions, using integer value of x for x=−3 to x=5. How can you use the tables to determine the multipliers?
Define Functions and Multiplier: Define the functions and identify the multiplier. f(x)=2x, f(x)=2⋅2x, and f(x)=(21)⋅2x all involve the base 2 raised to the power x. The multiplier in each function is the coefficient of 2x.For f(x)=2x, the multiplier is 1.For f(x)=2⋅2x, the multiplier is 2.For f(x)=(21)⋅2x, the multiplier is f(x)=2⋅2x1.
Create x⟶f(x) Table: Create an x⟶f(x) table for each function from x=−3 to x=5. For f(x)=2x: x=−3⟶f(x)=2−3=81x=−2⟶f(x)=2−2=41x=−1⟶f(x)=2−1=21x=0⟶f(x)=20=1x=1⟶f(x)=21=2x⟶f(x)0x⟶f(x)1x⟶f(x)2x⟶f(x)3
Continue Table for 2⋅2x: Continue the table for f(x)=2⋅2x.x=−3⟶f(x)=2⋅2−3=41x=−2⟶f(x)=2⋅2−2=21x=−1⟶f(x)=2⋅2−1=1x=0⟶f(x)=2⋅20=2x=1⟶f(x)=2⋅21=4x=2⟶f(x)=2⋅22=8x=3⟶f(x)=2⋅23=16x=4⟶f(x)=2⋅24=32$x = \(5\) \longrightarrow f(x) = \(2\)\cdot\(2\)^\(5\) = \(64\)
Analyze Tables for Multipliers: Analyze the tables to determine the multipliers. By comparing the values of \(f(x)\) for each function at the same \(x\), we see that each function's output is a multiple of \(2^x\). The multiplier directly affects the output values, confirming the multipliers identified in Step \(1\).
More problems from Compare linear and exponential growth