Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

8-26. The functions 
f(x)=2^(x),f(x)=2*2^(x), and 
f(x)=(1)/(2)*2^(x) all have the same nuultiplier.
a. What is the multiplier for these functions? Make an 
x rarr f(x) table for each of the functions, using integer value of 
x for 
x=-3 to 
x=5. How can you use the tables to determine the multipliers?

The functions f(x)=2x,f(x)=22x f(x)=2^{x}, f(x)=2 \cdot 2^{x} , and f(x)=122x f(x)=\frac{1}{2} \cdot 2^{x} all have the same nuultiplier.\newlinea. What is the multiplier for these functions? Make an xf(x) x \rightarrow f(x) table for each of the functions, using integer value of x x for x=3 x=-3 to x=5 x=5 . How can you use the tables to determine the multipliers?

Full solution

Q. The functions f(x)=2x,f(x)=22x f(x)=2^{x}, f(x)=2 \cdot 2^{x} , and f(x)=122x f(x)=\frac{1}{2} \cdot 2^{x} all have the same nuultiplier.\newlinea. What is the multiplier for these functions? Make an xf(x) x \rightarrow f(x) table for each of the functions, using integer value of x x for x=3 x=-3 to x=5 x=5 . How can you use the tables to determine the multipliers?
  1. Define Functions and Multiplier: Define the functions and identify the multiplier. \newlinef(x)=2xf(x) = 2^x, f(x)=22xf(x) = 2 \cdot 2^x, and f(x)=(12)2xf(x) = (\frac{1}{2}) \cdot 2^x all involve the base 22 raised to the power xx. The multiplier in each function is the coefficient of 2x2^x.\newlineFor f(x)=2xf(x) = 2^x, the multiplier is 11.\newlineFor f(x)=22xf(x) = 2 \cdot 2^x, the multiplier is 22.\newlineFor f(x)=(12)2xf(x) = (\frac{1}{2}) \cdot 2^x, the multiplier is f(x)=22xf(x) = 2 \cdot 2^x11.
  2. Create xf(x)x \longrightarrow f(x) Table: Create an xf(x)x \longrightarrow f(x) table for each function from x=3x = -3 to x=5x = 5. For f(x)=2xf(x) = 2^x: x=3f(x)=23=18x = -3 \longrightarrow f(x) = 2^{-3} = \frac{1}{8} x=2f(x)=22=14x = -2 \longrightarrow f(x) = 2^{-2} = \frac{1}{4} x=1f(x)=21=12x = -1 \longrightarrow f(x) = 2^{-1} = \frac{1}{2} x=0f(x)=20=1x = 0 \longrightarrow f(x) = 2^0 = 1 x=1f(x)=21=2x = 1 \longrightarrow f(x) = 2^1 = 2 xf(x)x \longrightarrow f(x)00 xf(x)x \longrightarrow f(x)11 xf(x)x \longrightarrow f(x)22 xf(x)x \longrightarrow f(x)33
  3. Continue Table for 22x2\cdot2^x: Continue the table for f(x)=22xf(x) = 2\cdot2^x.\newlinex=3f(x)=223=14x = -3 \longrightarrow f(x) = 2\cdot2^{-3} = \frac{1}{4}\newlinex=2f(x)=222=12x = -2 \longrightarrow f(x) = 2\cdot2^{-2} = \frac{1}{2}\newlinex=1f(x)=221=1x = -1 \longrightarrow f(x) = 2\cdot2^{-1} = 1\newlinex=0f(x)=220=2x = 0 \longrightarrow f(x) = 2\cdot2^0 = 2\newlinex=1f(x)=221=4x = 1 \longrightarrow f(x) = 2\cdot2^1 = 4\newlinex=2f(x)=222=8x = 2 \longrightarrow f(x) = 2\cdot2^2 = 8\newlinex=3f(x)=223=16x = 3 \longrightarrow f(x) = 2\cdot2^3 = 16\newlinex=4f(x)=224=32x = 4 \longrightarrow f(x) = 2\cdot2^4 = 32\newline$x = \(5\) \longrightarrow f(x) = \(2\)\cdot\(2\)^\(5\) = \(64\)
  4. Continue Table for \((1/2)\cdot2^x\): Continue the table for \(f(x) = (1/2)\cdot2^x\).
    \(x = -3 \rightarrow f(x) = (1/2)\cdot2^{-3} = 1/16\)
    \(x = -2 \rightarrow f(x) = (1/2)\cdot2^{-2} = 1/8\)
    \(x = -1 \rightarrow f(x) = (1/2)\cdot2^{-1} = 1/4\)
    \(x = 0 \rightarrow f(x) = (1/2)\cdot2^0 = 1/2\)
    \(x = 1 \rightarrow f(x) = (1/2)\cdot2^1 = 1\)
    \(x = 2 \rightarrow f(x) = (1/2)\cdot2^2 = 2\)
    \(x = 3 \rightarrow f(x) = (1/2)\cdot2^3 = 4\)
    \(x = 4 \rightarrow f(x) = (1/2)\cdot2^4 = 8\)
    \(f(x) = (1/2)\cdot2^x\)\(0\)
  5. Analyze Tables for Multipliers: Analyze the tables to determine the multipliers. By comparing the values of \(f(x)\) for each function at the same \(x\), we see that each function's output is a multiple of \(2^x\). The multiplier directly affects the output values, confirming the multipliers identified in Step \(1\).

More problems from Compare linear and exponential growth