Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

8^(-(1)/(2))*8^((7)/(6))
What is the value of the given expression?

812876 8^{-\frac{1}{2}} \cdot 8^{\frac{7}{6}} \newlineWhat is the value of the given expression?

Full solution

Q. 812876 8^{-\frac{1}{2}} \cdot 8^{\frac{7}{6}} \newlineWhat is the value of the given expression?
  1. Apply exponent property: Apply the property of exponents that states when multiplying expressions with the same base, you add the exponents.\newline8(12)×876=8((12)+76)8^{-(\frac{1}{2})} \times 8^{\frac{7}{6}} = 8^{\left(-(\frac{1}{2}) + \frac{7}{6}\right)}
  2. Add exponents: Add the exponents (12)\left(-\frac{1}{2}\right) and 76\frac{7}{6} together.\newline(12)+76=(36)+76=46\left(-\frac{1}{2}\right) + \frac{7}{6} = \left(-\frac{3}{6}\right) + \frac{7}{6} = \frac{4}{6}
  3. Simplify the fraction: Simplify the fraction (4)/(6)(4)/(6) by dividing both the numerator and the denominator by their greatest common divisor, which is 22.\newline(4)/(6)=(2×2)/(2×3)=(2)/(3)(4)/(6) = (2 \times 2)/(2 \times 3) = (2)/(3)
  4. Substitute simplified exponent: Substitute the simplified exponent back into the base 88. 8(4)/(6)8^{(4)/(6)} simplifies to 8(2)/(3)8^{(2)/(3)}
  5. Calculate value of 8238^{\frac{2}{3}}: Calculate the value of 8(23)8^{\left(\frac{2}{3}\right)}. Since 8=238 = 2^3, we can rewrite 8(23)8^{\left(\frac{2}{3}\right)} as (23)(23)(2^3)^{\left(\frac{2}{3}\right)}.\newline(23)(23)=23(23)=22(2^3)^{\left(\frac{2}{3}\right)} = 2^{3\left(\frac{2}{3}\right)} = 2^2
  6. Calculate value of 222^2: Calculate the value of 222^2.\newline22=2×2=42^2 = 2 \times 2 = 4

More problems from Compare linear, exponential, and quadratic growth