Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

6^((1)/(6))*2^((5)/(6))*3^((7)/(6))
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
6root(3)(3)
(B) 
2^((5)/(36))*3^((7)/(36))
(C) 
36^((35)/(216))
(D) 
root(3)(6^(13))

616256376 6^{\frac{1}{6}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{7}{6}} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 633 6 \sqrt[3]{3} \newline(B) 25363736 2^{\frac{5}{36}} \cdot 3^{\frac{7}{36}} \newline(C) 3635216 36^{\frac{35}{216}} \newline(D) 6133 \sqrt[3]{6^{13}}

Full solution

Q. 616256376 6^{\frac{1}{6}} \cdot 2^{\frac{5}{6}} \cdot 3^{\frac{7}{6}} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 633 6 \sqrt[3]{3} \newline(B) 25363736 2^{\frac{5}{36}} \cdot 3^{\frac{7}{36}} \newline(C) 3635216 36^{\frac{35}{216}} \newline(D) 6133 \sqrt[3]{6^{13}}
  1. Combine terms with same base: Combine the terms with the same base.\newlineWe notice that 66 can be written as 2×32 \times 3, so we can combine the terms with the base of 22 and 33.\newline6(1/6)×2(5/6)×3(7/6)=(2×3)(1/6)×2(5/6)×3(7/6)6^{(1/6)}\times2^{(5/6)}\times3^{(7/6)} = (2 \times 3)^{(1/6)}\times2^{(5/6)}\times3^{(7/6)}
  2. Apply exponent to factors: Apply the exponent to the factors of 66. \newline(2×3)16=216×316(2 \times 3)^{\frac{1}{6}} = 2^{\frac{1}{6}} \times 3^{\frac{1}{6}}\newlineNow we have all terms with base 22 and 33, and we can combine them.
  3. Combine exponents for base terms: Combine the exponents for the base 22 and base 33 terms.\newline2(1)/(6)×2(5)/(6)=2(1)/(6)+(5)/(6)=21=22^{(1)/(6)} \times 2^{(5)/(6)} = 2^{(1)/(6) + (5)/(6)} = 2^1 = 2\newline3(1)/(6)×3(7)/(6)=3(1)/(6)+(7)/(6)=3(8)/(6)=34/33^{(1)/(6)} \times 3^{(7)/(6)} = 3^{(1)/(6) + (7)/(6)} = 3^{(8)/(6)} = 3^{4/3}
  4. Multiply simplified terms: Multiply the simplified terms. 2×343=2×343=2×8132 \times 3^{\frac{4}{3}} = 2 \times \sqrt[3]{3^4} = 2 \times \sqrt[3]{81}
  5. Simplify cube root: Simplify the cube root. 813=341/3=34/3=314/3=34/3=3×3=9\sqrt[3]{81} = 3^{4^{1/3}} = 3^{4/3} = 3^{1*4/3} = 3^{4/3} = 3 \times 3 = 9
  6. Multiply remaining terms: Multiply the remaining terms. 2×9=182 \times 9 = 18
  7. Check answer choices: Check the answer choices to see which one is equivalent to 1818.
    (A) 6336\sqrt[3]{3} is not 1818.
    (B) 2536×37362^{\frac{5}{36}}\times3^{\frac{7}{36}} is not 1818.
    (C) 363521636^{\frac{35}{216}} is not 1818.
    (D) 6133\sqrt[3]{6^{13}} is not 1818.
    None of the answer choices are equivalent to 1818, which means there might be a mistake in our calculations.

More problems from Compare linear and exponential growth