Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

6^((1)/(2))+6^((3)/(2))
Which of the following values is equal to the given value?
Choose 1 answer:
(A) 
sqrt222
(B) 
7sqrt6
(c) 
6^((3)/(4))
(D) 36

612+632 6^{\frac{1}{2}}+6^{\frac{3}{2}} \newlineWhich of the following values is equal to the given value?\newlineChoose 11 answer:\newline(A) 222 \sqrt{222} \newline(B) 76 7 \sqrt{6} \newline(C) 634 6^{\frac{3}{4}} \newline(D) 3636

Full solution

Q. 612+632 6^{\frac{1}{2}}+6^{\frac{3}{2}} \newlineWhich of the following values is equal to the given value?\newlineChoose 11 answer:\newline(A) 222 \sqrt{222} \newline(B) 76 7 \sqrt{6} \newline(C) 634 6^{\frac{3}{4}} \newline(D) 3636
  1. Understanding the given expressions: Understand the given expressions.\newline6(12)6^{\left(\frac{1}{2}\right)} is the square root of 66, which can be written as 6\sqrt{6}.\newline6(32)6^{\left(\frac{3}{2}\right)} is the same as (612)3\left(6^{\frac{1}{2}}\right)^3, which means the square root of 66 cubed, or (6)3\left(\sqrt{6}\right)^3.
  2. Simplifying the expressions: Simplify the expressions.\newline6\sqrt{6} is already in its simplest form.\newline(6)3(\sqrt{6})^3 means 6×6×6\sqrt{6} \times \sqrt{6} \times \sqrt{6}, which is 6×66 \times \sqrt{6} because 6×6=6\sqrt{6} \times \sqrt{6} = 6.
  3. Adding the simplified expressions: Add the simplified expressions.\newline6(12)+6(32)=6+666^{\left(\frac{1}{2}\right)} + 6^{\left(\frac{3}{2}\right)} = \sqrt{6} + 6 \cdot \sqrt{6}.\newlineThis can be written as 16+661\sqrt{6} + 6\sqrt{6}, which is 767\sqrt{6}.
  4. Matching the result with the choices: Match the result with the given choices.\newlineThe result from Step 33 is 767\sqrt{6}, which corresponds to choice (B) 767\sqrt{6}.

More problems from Compare linear and exponential growth