Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
4
x
−
x
2
y
+
y
3
=
10
4 x-x^{2} y+y^{3}=10
4
x
−
x
2
y
+
y
3
=
10
\newline
Find the value of
d
y
d
x
\frac{d y}{d x}
d
x
d
y
at the point
(
1
,
2
)
(1,2)
(
1
,
2
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
2
3
\frac{2}{3}
3
2
\newline
(C)
−
1
-1
−
1
\newline
(D)
0
0
0
View step-by-step help
Home
Math Problems
Calculus
Euler's method
Full solution
Q.
4
x
−
x
2
y
+
y
3
=
10
4 x-x^{2} y+y^{3}=10
4
x
−
x
2
y
+
y
3
=
10
\newline
Find the value of
d
y
d
x
\frac{d y}{d x}
d
x
d
y
at the point
(
1
,
2
)
(1,2)
(
1
,
2
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
2
3
\frac{2}{3}
3
2
\newline
(C)
−
1
-1
−
1
\newline
(D)
0
0
0
Plug in point
(
1
,
2
)
(1,2)
(
1
,
2
)
:
Now, plug in the point
(
1
,
2
)
(1,2)
(
1
,
2
)
into the differentiated equation.
\newline
4
−
2
(
1
)
(
2
)
−
(
1
)
2
d
y
d
x
+
3
(
2
)
2
d
y
d
x
=
0
4 - 2(1)(2) - (1)^2\frac{dy}{dx} + 3(2)^2\frac{dy}{dx} = 0
4
−
2
(
1
)
(
2
)
−
(
1
)
2
d
x
d
y
+
3
(
2
)
2
d
x
d
y
=
0
\newline
4
−
4
−
d
y
d
x
+
12
d
y
d
x
=
0
4 - 4 - \frac{dy}{dx} + 12\frac{dy}{dx} = 0
4
−
4
−
d
x
d
y
+
12
d
x
d
y
=
0
Simplify and solve for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
:
Simplify the equation to solve for
d
y
d
x
\frac{dy}{dx}
d
x
d
y
.
0
−
d
y
d
x
+
12
(
d
y
d
x
)
=
0
0 - \frac{dy}{dx} + 12\left(\frac{dy}{dx}\right) = 0
0
−
d
x
d
y
+
12
(
d
x
d
y
)
=
0
11
(
d
y
d
x
)
=
4
11\left(\frac{dy}{dx}\right) = 4
11
(
d
x
d
y
)
=
4
d
y
d
x
=
4
11
\frac{dy}{dx} = \frac{4}{11}
d
x
d
y
=
11
4
More problems from Euler's method
Question
Let
f
(
x
)
=
x
3
+
6
x
2
+
6
x
f(x)=x^{3}+6 x^{2}+6 x
f
(
x
)
=
x
3
+
6
x
2
+
6
x
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
f
f
f
on the interval
[
−
6
,
0
]
[-6,0]
[
−
6
,
0
]
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
5
-5
−
5
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
-3
−
3
\newline
(D)
−
1
-1
−
1
Get tutor help
Posted 9 months ago
Question
Let
f
(
x
)
=
x
3
+
9
x
2
+
13
x
f(x)=x^{3}+9 x^{2}+13 x
f
(
x
)
=
x
3
+
9
x
2
+
13
x
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
f
f
f
on the interval
−
7
≤
x
≤
−
1
-7 \leq x \leq-1
−
7
≤
x
≤
−
1
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
6
-6
−
6
\newline
(B)
−
5
-5
−
5
\newline
(C)
−
3
-3
−
3
\newline
(D)
−
2
-2
−
2
Get tutor help
Posted 9 months ago
Question
Let
h
(
x
)
=
x
3
−
9
x
2
+
7
x
h(x)=x^{3}-9 x^{2}+7 x
h
(
x
)
=
x
3
−
9
x
2
+
7
x
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
h
h
h
on the interval
−
3
≤
x
≤
6
-3 \leq x \leq 6
−
3
≤
x
≤
6
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
0
0
0
\newline
(C)
3
3
3
\newline
(D)
4
4
4
Get tutor help
Posted 9 months ago
Question
The average cost per meal served at Kiran's restaurant decreases at a rate of
2400
q
2
\frac{2400}{q^{2}}
q
2
2400
dollars per meal served that month (where
q
q
q
is the number of meals served).
\newline
By how many dollars does the average cost per meal decrease between
q
=
300
q=300
q
=
300
and
q
=
360
q=360
q
=
360
?
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
.
67
67
67
\newline
(B)
0
0
0
.
81
81
81
\newline
(C)
1
1
1
.
11
11
11
\newline
(D)
1
1
1
.
33
33
33
Get tutor help
Posted 9 months ago
Question
Let
h
(
x
)
=
−
2
x
3
−
7
h(x)=-2 x^{3}-7
h
(
x
)
=
−
2
x
3
−
7
.
\newline
The absolute maximum value of
h
h
h
over the closed interval
[
−
3
,
2
]
[-3,2]
[
−
3
,
2
]
occurs at what
x
x
x
-value?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
−
2
-2
−
2
\newline
(C)
2
2
2
\newline
(D)
−
3
-3
−
3
Get tutor help
Posted 9 months ago
Question
Let
h
(
x
)
=
x
3
+
6
x
2
+
2
h(x)=x^{3}+6 x^{2}+2
h
(
x
)
=
x
3
+
6
x
2
+
2
.
\newline
What is the absolute minimum value of
h
h
h
over the closed interval
−
6
≤
x
≤
2
-6 \leq x \leq 2
−
6
≤
x
≤
2
?
\newline
Choose
1
1
1
answer:
\newline
(A)
34
34
34
\newline
(B)
2
2
2
\newline
(C)
−
34
-34
−
34
\newline
(D)
−
2
-2
−
2
Get tutor help
Posted 9 months ago
Question
Let
g
(
x
)
=
−
2
x
3
+
3
x
2
+
36
x
g(x)=-2 x^{3}+3 x^{2}+36 x
g
(
x
)
=
−
2
x
3
+
3
x
2
+
36
x
.
\newline
The absolute maximum value of
g
g
g
over the closed interval
[
−
3
,
5
]
[-3,5]
[
−
3
,
5
]
occurs at what
x
x
x
-value?
\newline
Choose
1
1
1
answer:
\newline
(A)
5
5
5
\newline
(B)
2
2
2
\newline
(C)
3
3
3
\newline
(D)
−
3
-3
−
3
Get tutor help
Posted 9 months ago
Question
Let
h
(
x
)
=
x
3
−
6
x
2
+
8
h(x)=x^{3}-6 x^{2}+8
h
(
x
)
=
x
3
−
6
x
2
+
8
.
\newline
The absolute minimum value of
h
h
h
over the closed interval
−
1
≤
x
≤
6
-1 \leq x \leq 6
−
1
≤
x
≤
6
occurs at what
x
x
x
value?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
6
6
6
\newline
(C)
4
4
4
\newline
(D)
0
0
0
Get tutor help
Posted 9 months ago
Question
Let
g
(
x
)
=
x
3
−
12
x
+
7
g(x)=x^{3}-12 x+7
g
(
x
)
=
x
3
−
12
x
+
7
.
\newline
The absolute maximum value of
g
g
g
over the closed interval
[
−
4
,
5
]
[-4,5]
[
−
4
,
5
]
occurs at what
x
x
x
-value?
\newline
Choose
1
1
1
answer:
\newline
(A)
5
5
5
\newline
(B)
−
2
-2
−
2
\newline
(C)
2
2
2
\newline
(D)
−
4
-4
−
4
Get tutor help
Posted 9 months ago
Question
Let
h
(
x
)
=
−
2
x
3
−
7
h(x)=-2 x^{3}-7
h
(
x
)
=
−
2
x
3
−
7
.
\newline
The absolute maximum value of
h
h
h
over the closed interval
[
−
3
,
2
]
[-3,2]
[
−
3
,
2
]
occurs at what
x
x
x
-value?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
2
2
2
\newline
(C)
1
1
1
\newline
(D)
−
2
-2
−
2
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant