Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4x-x^(2)y+y^(3)=10
Find the value of 
(dy)/(dx) at the point 
(1,2).
Choose 1 answer:
(A) -4
(B) 
(2)/(3)
(C) -1
(D) 0

4xx2y+y3=10 4 x-x^{2} y+y^{3}=10 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 23 \frac{2}{3} \newline(C) 1-1\newline(D) 00

Full solution

Q. 4xx2y+y3=10 4 x-x^{2} y+y^{3}=10 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 23 \frac{2}{3} \newline(C) 1-1\newline(D) 00
  1. Plug in point (1,2)(1,2): Now, plug in the point (1,2)(1,2) into the differentiated equation. \newline42(1)(2)(1)2dydx+3(2)2dydx=04 - 2(1)(2) - (1)^2\frac{dy}{dx} + 3(2)^2\frac{dy}{dx} = 0\newline44dydx+12dydx=04 - 4 - \frac{dy}{dx} + 12\frac{dy}{dx} = 0
  2. Simplify and solve for dydx\frac{dy}{dx}: Simplify the equation to solve for dydx\frac{dy}{dx}.0dydx+12(dydx)=00 - \frac{dy}{dx} + 12\left(\frac{dy}{dx}\right) = 011(dydx)=411\left(\frac{dy}{dx}\right) = 4dydx=411\frac{dy}{dx} = \frac{4}{11}

More problems from Euler's method