Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4x-x^(2)y+y^(3)=10
Find the value of 
(dy)/(dx) at the point 
(1,2).
Choose 1 answer:
(A) 0
(B) 
(2)/(3)
(C) -1
(D) -4

4xx2y+y3=10 4 x-x^{2} y+y^{3}=10 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineChoose 11 answer:\newline(A) 00\newline(B) 23 \frac{2}{3} \newline(C) 1-1\newline(D) 4-4

Full solution

Q. 4xx2y+y3=10 4 x-x^{2} y+y^{3}=10 \newlineFind the value of dydx \frac{d y}{d x} at the point (1,2) (1,2) .\newlineChoose 11 answer:\newline(A) 00\newline(B) 23 \frac{2}{3} \newline(C) 1-1\newline(D) 4-4
  1. Apply Rules and Derivatives: Now, apply the product rule to the term x2y-x^2y and the chain rule to y3y^3. \newlineddx(4x)ddx(x2y)+ddx(y3)=0\frac{d}{dx}(4x) - \frac{d}{dx}(x^2y) + \frac{d}{dx}(y^3) = 0\newline4(2xy+x2dydx)+3y2dydx=04 - (2xy + x^2\frac{dy}{dx}) + 3y^2\frac{dy}{dx} = 0
  2. Substitute Point into Equation: Substitute the point (1,2)(1,2) into the differentiated equation.\newline4(212+12dydx)+322dydx=04 - (2\cdot 1\cdot 2 + 1^2\frac{dy}{dx}) + 3\cdot 2^2\frac{dy}{dx} = 0\newline4(4+dydx)+12dydx=04 - (4 + \frac{dy}{dx}) + 12\frac{dy}{dx} = 0
  3. Simplify and Solve for dydx\frac{dy}{dx}: Simplify the equation and solve for dydx\frac{dy}{dx}.44dydx+12dydx=04 - 4 - \frac{dy}{dx} + 12\frac{dy}{dx} = 00=dydx(121)0 = \frac{dy}{dx}(12 - 1)dydx=011\frac{dy}{dx} = \frac{0}{11}dydx=0\frac{dy}{dx} = 0

More problems from Transformations of quadratic functions