Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

49x^(2)-64=0
What are the solutions to the given equation?
Choose 1 answer:
(A) 
x=(64)/(49)
(B) 
x=-(64)/(49) and 
x=(64)/(49)
(C) 
x=(8)/(7)
(D) 
x=-(8)/(7) and 
x=(8)/(7)

49x264=0 49 x^{2}-64=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=6449 x=\frac{64}{49} \newlineB x=6449 x=-\frac{64}{49} and x=6449 x=\frac{64}{49} \newline(C) x=87 x=\frac{8}{7} \newline(D) x=87 x=-\frac{8}{7} and x=87 x=\frac{8}{7}

Full solution

Q. 49x264=0 49 x^{2}-64=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=6449 x=\frac{64}{49} \newlineB x=6449 x=-\frac{64}{49} and x=6449 x=\frac{64}{49} \newline(C) x=87 x=\frac{8}{7} \newline(D) x=87 x=-\frac{8}{7} and x=87 x=\frac{8}{7}
  1. Identify equation type and method: Identify the type of equation and the method to solve it.\newlineThe given equation is a quadratic equation in the standard form ax2+bx+c=0ax^2 + bx + c = 0, where a=49a = 49, b=0b = 0, and c=64c = -64.\newlineTo solve for xx, we can factor the equation or use the quadratic formula. Since the equation is already in a form that suggests factoring, we will attempt to factor it.
  2. Factor the quadratic equation: Factor the quadratic equation.\newlineThe equation 49x26449x^2 - 64 can be factored as a difference of squares because both 49x249x^2 and 6464 are perfect squares.\newline(7x)282=0(7x)^2 - 8^2 = 0\newline(7x+8)(7x8)=0(7x + 8)(7x - 8) = 0
  3. Solve for x: Set each factor equal to zero and solve for x. \newline7x+8=07x + 8 = 0 or 7x8=07x - 8 = 0\newlineFor the first factor:\newline7x+8=07x + 8 = 0\newline7x=87x = -8\newlinex=87x = -\frac{8}{7}\newlineFor the second factor:\newline7x8=07x - 8 = 0\newline7x=87x = 8\newlinex=87x = \frac{8}{7}
  4. Check solutions in original equation: Check the solutions in the original equation.\newlineSubstitute x=87x = -\frac{8}{7} into the original equation:\newline49(87)264=49(6449)64=6464=049\left(-\frac{8}{7}\right)^2 - 64 = 49\left(\frac{64}{49}\right) - 64 = 64 - 64 = 0\newlineSubstitute x=87x = \frac{8}{7} into the original equation:\newline49(87)264=49(6449)64=6464=049\left(\frac{8}{7}\right)^2 - 64 = 49\left(\frac{64}{49}\right) - 64 = 64 - 64 = 0\newlineBoth solutions satisfy the original equation.

More problems from Compare linear and exponential growth