Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4.) The solution to 
x^(2)-4x-6=0 in simplest surd form is

44.) The solution to x24x6=0 x^{2}-4 x-6=0 in simplest surd form is

Full solution

Q. 44.) The solution to x24x6=0 x^{2}-4 x-6=0 in simplest surd form is
  1. Identify Equation Type: Identify the type of equation.\newlineWe have a quadratic equation in the form ax2+bx+c=0ax^2 + bx + c = 0, where a=1a = 1, b=4b = -4, and c=6c = -6.
  2. Apply Quadratic Formula: Apply the quadratic formula to find the roots of the equation.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.\newlineHere, a=1a = 1, b=4b = -4, and c=6c = -6.
  3. Calculate Discriminant: Calculate the discriminant b24acb^2 - 4ac.\newlineDiscriminant = (4)24(1)(6)=16+24=40(-4)^2 - 4(1)(-6) = 16 + 24 = 40.
  4. Substitute Values: Substitute the values into the quadratic formula.\newlinex=(4)±4021x = \frac{-(-4) \pm \sqrt{40}}{2 \cdot 1}\newlinex=4±402x = \frac{4 \pm \sqrt{40}}{2}
  5. Simplify Square Root: Simplify the square root of the discriminant. 40\sqrt{40} can be written as 4×10\sqrt{4\times10}, which simplifies to 2×102\times\sqrt{10}.
  6. Substitute Simplified Root: Substitute the simplified square root back into the formula. x=4±2102x = \frac{4 \pm 2\sqrt{10}}{2}
  7. Simplify Expression: Simplify the expression by dividing all terms by 22\frac{2}{2}.x=2±102x = \frac{2 \pm \sqrt{10}}{2}

More problems from Evaluate rational exponents