Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3*2^((x)/(5))=150
Which of the following is the solution of the equation?
Choose 1 answer:
(A) 
x=log_(50)(2)
(B) 
x=5log_(50)(2)
(C) 
x=5log_(2)(50)
(D) 
x=log_(2)(50)

32x5=150 3 \cdot 2^{\frac{x}{5}}=150 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) x=log50(2) x=\log _{50}(2) \newline(B) x=5log50(2) x=5 \log _{50}(2) \newline(C) x=5log2(50) x=5 \log _{2}(50) \newline(D) x=log2(50) x=\log _{2}(50)

Full solution

Q. 32x5=150 3 \cdot 2^{\frac{x}{5}}=150 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) x=log50(2) x=\log _{50}(2) \newline(B) x=5log50(2) x=5 \log _{50}(2) \newline(C) x=5log2(50) x=5 \log _{2}(50) \newline(D) x=log2(50) x=\log _{2}(50)
  1. Divide by 33: Divide both sides of the equation by 33 to isolate the term with the exponent on one side.\newline3×2x/5=1503 \times 2^{x/5} = 150\newline(3×2x/5)/3=150/3(3 \times 2^{x/5}) / 3 = 150 / 3\newline2x/5=502^{x/5} = 50
  2. Take logarithm: Take the logarithm with base 22 of both sides to solve for xx.
    log2(2x/5)=log2(50)\log_2(2^{x/5}) = \log_2(50)
    Using the property of logarithms that logb(bx)=x\log_b(b^x) = x, we get:
    x5=log2(50)\frac{x}{5} = \log_2(50)
  3. Multiply by 55: Multiply both sides of the equation by 55 to solve for xx.(x5)×5=log2(50)×5\left(\frac{x}{5}\right) \times 5 = \log_2(50) \times 5x=5×log2(50)x = 5 \times \log_2(50)

More problems from Compare linear and exponential growth