Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2^(5)*((1)/(4))^(7)
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) 
2^(-2)
(B) 
2^(-4)
(c) 
2^(-9)
(D) 
2^(10)

25(14)7 2^{5} \cdot\left(\frac{1}{4}\right)^{7} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 22 2^{-2} \newline(B) 24 2^{-4} \newline(C) 29 2^{-9} \newline(D) 210 2^{10}

Full solution

Q. 25(14)7 2^{5} \cdot\left(\frac{1}{4}\right)^{7} \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 22 2^{-2} \newline(B) 24 2^{-4} \newline(C) 29 2^{-9} \newline(D) 210 2^{10}
  1. Understand Expression: Understand the given expression and the properties of exponents.\newlineWe have the expression 25×(14)72^{5}\times\left(\frac{1}{4}\right)^{7}. We know that (14)\left(\frac{1}{4}\right) is the same as 222^{-2} because 14=222=2122=2(12)=21\frac{1}{4} = \frac{2}{2^2} = \frac{2^1}{2^2} = 2^{(1-2)} = 2^{-1}.
  2. Rewrite Using Property: Rewrite the expression using the property from Step 11.\newlineWe can rewrite (14)7\left(\frac{1}{4}\right)^{7} as (22)7(2^{-2})^{7}.\newlineSo, the expression becomes 25(22)7.2^{5} \cdot (2^{-2})^{7}.
  3. Apply Power Rule: Apply the power of a power rule to the second term.\newlineUsing the power of a power rule (am)n=amn(a^{m})^{n} = a^{m*n}, we get:\newline(22)7=227=214(2^{-2})^{7} = 2^{-2*7} = 2^{-14}.\newlineNow, the expression is 25×2142^{5} \times 2^{-14}.
  4. Combine Terms: Apply the product of powers rule to combine the terms.\newlineUsing the product of powers rule am×an=a(m+n)a^m \times a^n = a^{(m+n)}, we combine the terms:\newline25×214=2(514)=29.2^{5} \times 2^{-14} = 2^{(5-14)} = 2^{-9}.
  5. Match with Options: Match the result with the given options.\newlineThe simplified expression is 292^{-9}, which matches option (C)(C).

More problems from Compare linear and exponential growth